基于改进YOLOv8的试管条码旋转目标检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金资助项目(51774128);湖南省自然科学基金资助项目(2023JJ50184,2023JJ40263)


An Improved Yolov8-Based Algorithm for Test Tube Barcode Rotation Target Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对全自动流水线前处理阶段中试管表面条码粘贴角度倾斜和夹爪遮挡导致传统检测算法难以精确定位条码区域的问题,提出一种基于改进YOLOv8的试管条码旋转框检测算法。首先,使用GhostConv替换主干网络中的Conv模块,通过高效特征生成方法在显著降低计算量的同时实现与传统卷积相近的特征表现;接着,在C2f模块中引入Star模块,通过高维非线性特征映射增强模型的特征提取能力;同时,使用CCFM特征融合网络替换颈部网络,降低计算量。最后,引入CARAFE上采样方法,改善传统上采样方法引起的模糊效应。实验结果表明,改进模型在自制数据集上的准确率、召回率、mAP@50-95分别提高了2.8%, 2.1%, 6.6%,同时模型复杂度降低了27.7%,能够实现真实场景中对试管条码的精确定位。

    Abstract:

    A test tube barcode rotation box detection algorithm has been proposed based on improved YOLOv8 in view of the flaw of traditional detection algorithms being difficult to accurately locate the barcode area brought about by the inclined angle of barcode pasting on the surface of the test tube and the obstruction of the gripper during the pre-processing stage of the fully automated assembly line. Firstly, GhostConv is adopted to replace the Conv module in the backbone network, thus achieving feature representation similar to traditional convolution while significantly reducing computational complexity through efficient feature generation methods. Next, the Star module is introduced into the C2f module for an enhancement of the feature extraction capability of the model through high-dimensional nonlinear feature mapping. Meanwhile, the neck network is to be replaced with a CCFM feature fusion network, further reducing computational complexity. Finally, the CARAFE sampling method is introduced to improve the blurring effect brought about by traditional sampling methods. The experimental results show that the improved model is characterized with a high accuracy and recall on self-made datasets mAP@50-95, achieving an increase of 2.8%, 2.1%, and 6.6% respectively, while reducing the model complexity by 27.7%, thus enabling precise positioning of test tube barcodes in real-world scenarios.

    参考文献
    相似文献
    引证文献
引用本文

张 科,林嘉居,彭远刚,王跃明,汤建新.基于改进YOLOv8的试管条码旋转目标检测算法[J].湖南工业大学学报,2026,40(4):32-39.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-06
  • 出版日期:
文章二维码