基于迁移学习的肿瘤耐药细胞识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP18;TP317.4

基金项目:


A Tumor Drug-Resistant Cell Identification Method Based on Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对肿瘤异质性导致患者对相同药物治疗反应存在显著差异,进而引发肿瘤复发或转移的问题,提出一种基于图结构与无监督域适应的肿瘤耐药细胞识别方法GCDrug。该方法首先基于k最近邻分别构建源域(批量转录组测序)与目标域(单细胞转录组测序)样本的相似性图,利用图卷积网络提取特征;随后引入Deep CORAL损失,实现跨域分布自适应。在10个单细胞药物注释数据集上的实验结果表明,GCDrug在3项分类指标上均优于现有主流方法,其中,在Etoposide数据集上的F1分数达0.956,显著优于现有方法。消融实验进一步验证:图结构模块与域适应模块的协同作用,能提升模型的判别性能与泛化能力。实验结果表明,所提方法能够准确识别肿瘤中的耐药个体细胞。

    Abstract:

    In view of the flaw that tumor heterogeneity causes patients to respond differently to the same drug therapy, thus leading to tumor relapse or metastasis, a tumor drug-resistant cell recognition method GCDrug has been proposed based on graph structure and unsupervised domain adaptation. Firstly, similarity maps are to be constructed between source domain (batch transcriptome sequencing) and target domain (single-cell transcriptome sequencing) samples based on k-nearest neighbors, thus extracting features using graph convolutional networks. Subsequently, Deep CORAL loss is introduced to achieve cross-domain distribution adaptation. Experimental results on 10 single-cell drug-annotated datasets demonstrate that GCDrug outperforms current mainstream methods across three classification metrics. Notably, on the Etoposide dataset, GCDrug achieves an F1-score of 0.956, significantly outperforming existing methods. Ablation experiments further verify that the synergistic effect of the graph structure module and the domain adaptation module helps to improve the discriminative performance and generalization ability of the model. The experimental results indicate that the proposed method can accurately identify drug-resistant individual cells in tumors.

    参考文献
    相似文献
    引证文献
引用本文

黄竣峰,彭利红.基于迁移学习的肿瘤耐药细胞识别方法[J].湖南工业大学学报,2026,40(4):26-31.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-06
  • 出版日期:
文章二维码