基于体感温度和IFLA优化CNN-BiLSTM模型的短期电力负荷预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

国家重点研发计划基金资助项目(2022YFE0105200);湖南省株洲市电网有限公司科技基金资助项目(SGHNZZ00DKWT2400646)


Short-Term Power Load Forecasting Based on Perceived Temperature and IFLA Optimized CNN-BiLSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为准确预测电力负荷对优化发电和调度计划的影响,提升经济效益,保障电网安全运行,提出一种基于体感温度和改进菲克定律算法(improved Fick’s law algorithm,IFLA)优化CNN-BiLSTM的短期电力负荷预测模型。采用Logistic映射、柯西-高斯变异策略、螺旋波动搜索等改进FLA。首先用体感温度公式对气象数据进行特征增强处理,其次通过IFLA对CNN-BiLSTM网络进行超参数优化,最后由CNN-BiLSTM对数据进行特征提取并输出负荷预测结果。通过对2022年3月湖南某地居民用电负荷数据集进行仿真实验,实验结果表明,IFLA-CNN-BiLSTM预测模型输出的均方根误差为1.305、平均绝对误差为0.882、平均绝对百分数误差为2.558%、决定系数分别为0.989,验证了该模型在实际应用环境下的泛化性及可靠性。

    Abstract:

    In view of an accurate prediction of the impact of power load on optimizing power generation and scheduling plans, as well as an improvement of economic efficiency, so as to ensure safe operation of the power grid, a short-term power load forecasting model has thus been proposed based on perceived temperature and improved Fick’s law algorithm (IFLA) optimized CNN BiLSTM. Logistic mapping, Cauchy Gaussian mutation strategy, spiral wave search, and other techniques are used to improve FLA. Firstly, the features of meteorological data are amplified by adopting the somatosensory temperature formula. Secondly, the CNN BiLSTM network is subjected to hyperparameter optimization using IFLA. Finally, the CNN BiLSTM performs feature extraction on the data and outputs prediction results. On the basis of simulation experiments on the residential load dataset of a certain location in Hunan Province in March 2022, the experimental results show that the IFLA-CNN BiLSTM prediction model outputs root mean square error, average absolute error, average absolute percentage error, and coefficient of determination of 1.305, 0.882, 2.558%, and 0.989, respectively, verifying the generalization and reliability of the IFLA-CNN-BiLSTM model in practical environmental applications.

    参考文献
    相似文献
    引证文献
引用本文

赵文川,于惠钧,陈 刚,徐银凤,邹 海,辜海缤.基于体感温度和IFLA优化CNN-BiLSTM模型的短期电力负荷预测[J].湖南工业大学学报,2026,40(2):25-33.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-05
  • 出版日期:
文章二维码