基于快速傅里叶变换的裂缝分割算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

湖南省自然科学基金资助项目(2025JJ70638,2024JJ6224);湖南省教育厅科学研究基金资助项目(24C0233)


Crack Segmentation Algorithm Based on Fast Fourier Transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    裂缝分割是现代民用基础设施维护的关键一环,快速准确地检测出裂缝至关重要。故针对基于卷积模型在远距离建模方面的不足,以及基于Transformer模型在局部特征提取不足和计算复杂度较高的缺点,构建了一个基于频率增强的U型结构网络(FE-UNet)。首先,提出一个频率增强注意力模块(FEA),通过快速傅里叶变换将图像从空间域映射到频域,降低计算复杂度,并在频域中引入卷积模块以突出裂缝特定频率成分,从而增强特征表示。此外,提出了一个局部增强前馈网络(LE-FFN),通过整合来自多个分支下的多尺度语义信息,提高特征的局部交互能力。实验结果表明,所提出网络模型的mIoU和F1值最高达82.38%和79.48%,为道路健康监测提供了有力支持。

    Abstract:

    Crack segmentation is a critical task in the maintenance of modern civil infrastructure, where rapid and accurate crack detection is essential. In view of the limitations of convolution-based models in long-range modeling and the flaws of Transformer-based models in local feature extraction and high computational complexity, a frequency-enhanced U-shaped network (FE-UNet) has thus been proposed. First, a frequency-enhanced attention module (FEA) is introduced, which adopts fast Fourier transform to map the image from the spatial domain to the frequency domain, thus reducing computational complexity. A convolution module is subsequently introduced in the frequency domain to highlight crack specific frequency components, thereby enhancing feature representation. In addition, a local-enhanced feed-forward network (LE-FFN) is proposed to enhance the local interaction capability of features by integrating multi-scale semantic information from multiple branches. Experimental results show that the proposed network achieves a maximum mIoU of 82.38% and F1 of 79.48%, providing strong support for road health monitoring.

    参考文献
    相似文献
    引证文献
引用本文

王永明,胡仕刚,伍绍兵,梁思奇.基于快速傅里叶变换的裂缝分割算法[J].湖南工业大学学报,2026,40(1):102-108.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-26
  • 出版日期:
文章二维码