一种改进YOLOv8n的PCB板表面缺陷检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

湖南省自然科学基金资助项目(2024JJ8055);湖南省教育厅科研基金资助项目(21A0607,22C1027)


An Improved Algorithm for YOLOv8n PCB Surface Defect Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对PCB板表面缺陷检测中存在的检测精度低和微小目标漏检率高的问题,提出一种改进YOLOv8n的PCB板缺陷检测算法。首先对C2f模块进行了改进,通过引入ConvNeXt,设计了新的C2XT模块,以提高特征提取能力;然后在主干网络中引入GAM注意力机制,颈部网络采用CARAFE上采样技术,以增强关键特征表达;此外,在头部检测模块中引入一个针对微小目标的检测头,并融入能对特征进行自适应融合的ASFF模块,提高模型对小目标的检测能力;最后,通过DFL和μ-IoU的组合优化损失函数中边界框回归的计算。实验结果表明,改进的算法在各项指标上都有显著提升,相比原始 YOLOv8n算法提升了 3%,精确度提升了1.6%。

    Abstract:

    In view of the flaws of low detection accuracy and high missed detection rate of small targets in PCB surface defect detection, an improved YOLOv8n PCB surface defect detection algorithm has thus been proposed. Firstly, an improvement has been made of C2f modules, followed by an introduction of ConvNeXt as well as a new design of C2XT modules so as to enhance its feature extraction capability. Next, GAM attention mechanism is introduced into the backbone network, with CARAFE upsampling technique adopted in the neck network for an enhancement of the expression of key features. In addition, a detection head for small targets is introduced into the head detection module, with an ASFF module enabling an adaptive feature fusion integrated to improve detection ability of the model for small targets. Finally, the calculation of bounding box regression in the loss function can be optimized by combining DFL with μ-IoU. Experimental results show that the improved algorithm is characterized with a significant improvement in various indicators, with a 3% improvement in efficiency and a 1.6% improvement in accuracy compared to the original YOLOv8n algorithm.

    参考文献
    相似文献
    引证文献
引用本文

朱泽宇,肖满生,徐 萌,王瑶瑶,颜 谨,左国才.一种改进YOLOv8n的PCB板表面缺陷检测算法[J].湖南工业大学学报,2026,40(1):92-101.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-26
  • 出版日期:
文章二维码