相机源识别方法中的自适应注意力密集网络结构研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

湖南省自然科学基金资助项目(2022JJ50051,2024JJ7149);湖南省教育厅科学研究基金资助项目(22A0414,21A0350)


Research on Adaptive Attention Dense Network in Camera Source Recognition Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高深度学习模型在相机源识别领域的识别精度,设计了自适应注意力密集网络结构,并提出了自适应权重注意力方法。设计的网络结构包括预处理结构、密集连接结构、注意力结构、正则化结构4部分。注意力机制结构中采用自适应权重注意力方法,通过引入自适应权重因子,实现参数自适应优化,以便获取适应不同数据特点的最优注意力权重,提升模型特征学习和特征表达能力。并在两个经典数据集上进行了对比实验和消融实验。在对比实验中,与3个经典网络进行了比较,实验结果表明设计网络的识别性能在两个数据集上分别比其他3个网络至少提高了5.547%, 9.58%;消融实验结果表明,提出方法的识别性能在两个数据集上分别比其他消融方法至少提高了2.107%, 4.732%。

    Abstract:

    In view of an improvement of the recognition accuracy of deep learning models in the field of camera source recognition, an adaptive attention dense network structure has thus been designed, with an adaptive weighted attention method proposed. The designed network structure includes four parts: prepossessing structure, dense connection structure, attention structure, and regularization structure. The adaptive weight attention method is adopted in the attention mechanism structure so as to introduce adaptive weight factors for an parameter adaptive optimization, thus obtaining the optimal attention weight that adapts to different data characteristics and improve the model's feature learning and feature expression capabilities. Comparative experiments and ablation experiments are conducted on two classic datasets. In the comparative experiment, a comparison is made between the designed network and three classical networks, with the experimental results showing that the recognition performance of the designed network is improved by at least 5.547% and 9.283% on two datasets, respectively, compared to the other three networks. The results of the ablation experiment show that the recognition performance of the proposed method is at least 1.143% and 5.000% higher than other ablation methods on two datasets, respectively.

    参考文献
    相似文献
    引证文献
引用本文

吴昊璇,文志强.相机源识别方法中的自适应注意力密集网络结构研究[J].湖南工业大学学报,2026,40(1):85-91.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-26
  • 出版日期:
文章二维码