考虑列车运行位置的动态充放电阈值控制策略
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM73

基金项目:

湖南省自然科学基金资助项目(2021JJ50006,2022JJ50074,2023JJ50166)


Dynamic Charging and Discharging Threshold Control Strategy with Train Operating Position Taken into Consideration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对列车在多客运站运行过程中,牵引网电压波动剧烈、再生制动能量浪费严重以及线路损耗过高的问题,提出了一种基于列车运行位置和车载超级电容荷电状态的动态调整充放电阈值方法。通过能量优先原则,对系统的运行工况进行精确划分,以实现稳定牵引网电压。此外,为进一步减少牵引网的“阶跃”现象,将一种基于SOC状态的电压阈值变化率策略,与固定电压阈值变化率相比,得出该策略能更有效地减少线路损耗。最后,采用动态权重因子的粒子群对控制参数进行优化,并由长沙列车数据求解得到帕累托最优解集。结果表明,在相同控制参数下,与其他控制策略相比,该策略有效提高了系统的节能率和稳压性。

    Abstract:

    In view of the severe voltage fluctuations in the traction network, which result in a significant waste of regenerative braking energy (RBE), and excessive line losses during the operation of trains at multiple passenger stations, a dynamic adjustment method has thus been proposed for the charge and discharge threshold based on the train operating position and the state of charge (SOC) of onboard supercapacitors. By applying the energy priority principle, the operating conditions of the system are precisely classified to achieve a stable traction network voltage. In addition, to further mitigate the “step” phenomenon in the traction network, a voltage threshold variation rate strategy, which is based on SOC, has thus been introduced. Compared with the fixed voltage threshold variation rate, the proposed strategy can more effectively reduce line losses. Finally, a particle swarm optimization algorithm with dynamic weight factors is employed to optimize control parameters, with the Pareto optimal solution set obtained by using data from trains operating in Changsha. The results indicate that, under the same control parameters, the proposed strategy significantly improves the system, s energy-saving efficiency and voltage stability compared to other control strategies.

    参考文献
    相似文献
    引证文献
引用本文

于金海,王 欣,郭云龙.考虑列车运行位置的动态充放电阈值控制策略[J].湖南工业大学学报,2026,40(1):24-32.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-26
  • 出版日期:
文章二维码