基于细化聚合多频特征的图像超分辨率研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:


Research on Image Super Resolution Based on Refinement Aggregation of Multi Frequency Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于Transformer的方法在提取全局上下文方面表现优异,且在单图像超分辨率(SISR)方面拥有显著效果,但因其主要功能是捕获全局特征,这使得它更注重于捕获低频信息,从而忽略了对于高频特征的提取。为解决这一问题,提出了一种集成卷积和Transformer结构优势的多频特征聚合网络(MFAN)。该网络由3个重要模块组成:用于提取全局上下文的耦合自注意Transformer(CSAT)、用于提取并增强高频信息的高频增强模块(HFEM),以及用于细化全局特征的细化融合模块(RFM)。通过实验得知,与其他SR方法相比,所提出的MFAN显著提高了分辨的视觉效果和图像质量。

    Abstract:

    Given its good performance in extracting global context as well as its significant performance in single image super-resolution (SISR), the Transformer based method focuses more on capturing low-frequency information thus neglecting the extraction of high-frequency features, due to the fact that the main function of Transformer is for global feature capturing. In view of a solution of this issue, a multi-frequency feature aggregation network (MFAN) has thus been proposed with the advantages of convolution and transformer structures integrated together. This network consists of three important modules: the coupled self-attention transformer (CSAT) for extracting global context, the high-frequency enhancement module (HFEM) for extracting and enhancing high-frequency information, and the refinement fusion module (RFM) for refining global features. It is found that, compared with other SR methods, the proposed multi-frequency feature aggregation network is characterized with a significant improvement of the visual resolution and image quality based on experimental results.

    参考文献
    相似文献
    引证文献
引用本文

吴大荣,胡仕刚.基于细化聚合多频特征的图像超分辨率研究[J].湖南工业大学学报,2025,39(6):37-43.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-17
  • 出版日期:
文章二维码