改进YOLOv8的绝缘子缺陷检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

安徽省重点研究与开发计划基金资助项目(202104d07020010)


Research on an Improved Insulator Defect Detection of YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在绝缘子检测过程中,由于航拍绝缘子图像中背景复杂、检测目标尺度相差较大等特点,容易出现漏检和误检。为了能更准确地检测出缺陷的绝缘子,提出了一种CHD-YOLO算法模型。首先,在颈部网络中,采用轻量级的跨尺度特征融合模块CCFM,更好地利用特征信息,并降低网络的计算复杂度,减少网络计算开销;然后,将HAttention注意力机制融入YOLOv8n算法中,以获取更多细节特征,提高模型提取和融合目标特征的能力;最后,引入Dynamic Head模块,增强检测头的感知性能,提高模型对小缺陷区域的识别能力。实验结果表明,改进后的 YOLOv8模型mAP值达93.0%,相较于原YOLOv8提升了2.3%。该方法在精度和速度上达到了平衡,满足了电力系统绝缘子缺陷准确的检测需求。

    Abstract:

    In view of the likely missed and false detection in the process of insulator detection due to the complex background and large differences in the scale of the detection targets in aerial insulator images, a CHD-YOLO algorithm model has thus been proposed for a more accurate detection of defective insulators. Firstly, in the neck network, a lightweight cross scale feature fusion module (CCFM) is adopted for a better utilization of the feature information, thus reducing the computational complexity and overhead of the network. Next, the HAttention (Hybrid Attention Transformer) attention mechanism is integrated into the YOLOv8n algorithm so as to obtain more detailed features and improve the ability of the model to extract and fuse target features. Finally, the Dynamic Head module is introduced to enhance the performance of the detection head, as well as improve the recognition ability of the model for small defect areas. Experimental results show that the mAP value of the improved YOLOv8 model reached as high as 93.0%, an increase of 2.3% compared to the original YOLOv8. The proposed method achieves a balance between accuracy and speed, meeting the accurate detection requirements of insulator defects in power systems.

    参考文献
    相似文献
    引证文献
引用本文

刘 云,于 瓅.改进YOLOv8的绝缘子缺陷检测[J].湖南工业大学学报,2025,39(6):23-28.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-17
  • 出版日期:
文章二维码