融合加权辅助任务感知的多任务推荐算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP312

基金项目:

教育部中国高校产学研创新基金资助项目(2020ITA05043,2023DT002);湖南省教育厅科学研究基金资助项目(21C0409)


Multi-Task Recommendation Algorithm with Weighted Auxiliary Task Perception Integrated
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在线推荐系统在个性化学习路径设计中起着关键作用,但传统的推荐算法往往采用固定的权重设置,无法灵活适应用户的兴趣变化。为解决这一问题,首先,提出了一种融合加权辅助任务感知的多任务推荐算法WAA-TA,动态调整任务权重,并利用任务集合代表用户在不同生命周期阶段的学习需求,以提高推荐系统的准确性和个性化程度。其次,在Edx和MOOCCubeX两个数据集上与6个基线算法进行对比实验,实验结果表明,本算法在各项评估指标上表现更优越,尤其在提高用户满意度和推荐准确性方面有显著效果。

    Abstract:

    Despite the fact that online course recommendation system plays a key role in personalized learning path design, traditional recommendation algorithms, which often adopt fixed weight settings, fail to flexibly adapt to the changes of users’ interests. In order to address this issue, firstly, a multi-task recommendation algorithm WAA-TA has been proposed with weighted auxiliary task perception integrated. The algorithm dynamically adjusts task weights and uses task sets to represent users’ learning needs at different stages of their lifecycle, thus improving the accuracy and personalization of the recommendation system. Secondly, based on comparative experiments conducted with six baseline algorithms on the Edx and MOOCCubeX datasets, the experimental results show that this algorithm is characterized by an excellent performance in various evaluation indicators, especially in improving user satisfaction and recommendation accuracy.

    参考文献
    相似文献
    引证文献
引用本文

黄海洋,黄贤明,翁成康.融合加权辅助任务感知的多任务推荐算法[J].湖南工业大学学报,2025,39(6):15-22.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-17
  • 出版日期:
文章二维码