二维线性薛定谔方程的一种高效数值解法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O241.82

基金项目:

湖南省自然科学基金资助项目(2025JJ70080);湖南省普通高校教学改革基金资助项目(HNJG-20230951);湖南省教育厅科学研究基金资助重点项目(24A0518,21A0361)


An Efficient Numerical Solution for the Two-Dimensional Linear Schrödinger Equation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对二维线性薛定谔方程,构造了一种新的半离散有限元两网格算法。将原本在细网格上求解薛定谔方程的有限元解,简化为先在粗网格上求解原方程的有限元解,然后利用在粗网格上求得的数值解,在细网格上将方程的实部和虚部进行解耦,求解两个椭圆方程的有限元解。分析了两网格有限元解与精确解在H1范数下的误差,并进行了数值计算实验,得到的数值结果与文献[10]中的误差具有相同的误差阶,且在不同时刻的误差更小。

    Abstract:

    In view of a solution of the two-dimensional linear Schr?dinger equation, a new semi-discrete finite element two-grid algorithm has thus been constructed. The finite element solution of the Schr?dinger equation originally solved on a fine grid is simplified to first solve the finite element solution of the original equation on a coarse grid, followed by the adoption of the numerical solution obtained on the coarse grid to decouple the real and imaginary parts of the equation on the fine grid, thus solving the finite element solutions of two elliptical equations. An analysis has been made of the error between the finite element solution of two grids and the exact solution under the H1 norm, with numerical experiments conducted. The numerical results show that the error order remains the same as that in reference [10], with the error smaller at different times.

    参考文献
    相似文献
    引证文献
引用本文

王建云,钟子新,田智鲲.二维线性薛定谔方程的一种高效数值解法[J].湖南工业大学学报,2025,39(5):98-102.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-07
  • 出版日期:
文章二维码