大规模自动分拣仓库运输车分区调度路径规划
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

安徽省质量工程智慧物流虚拟仿真实训基地基金资助项目(2022xnfzjd009)


Partition Scheduling Path Planning for Large Scale Automatic Sorting Warehouse Transport Vehicles
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    常规运输车分区调度路径规划方法对运输车最佳路径调度参数的计算不准确,会导致运输车运输时间较长,为此提出大规模自动分拣仓库运输车分区调度路径规划方法。使用神经网络逼近算法,对大规模状态下的Q值进行拟合,并对种群数量进行计算,将拥挤度最大的个体选取出来,建立运输车分区调度路径规划模型。通过免疫遗传算法对最佳路径调度参数进行计算,按照参数对货物的取货次序进行交换,得到近状态下的近似输出动作指令,运输车按照该动作指令进行调度,完成运输车分区调度路径的规划。实验结果表明,在本文方法规划的调度路径下,运输车任务完成时间较短,说明该方法具有较好的应用效果。

    Abstract:

    In view of the inaccurate calculation of the optimal path scheduling parameters for transportation vehicles as well as the subsequent longer transportation time with the conventional transportation vehicle partition scheduling path planning method adopted, a partition scheduling path planning has thus been proposed for large scale automatic sorting warehouse transport vehicles. By using neural network approximation algorithm to fit the Q-values in large-scale states, a transportation vehicle partition scheduling path planning model is established, with the population size calculated, and with the individuals with the highest crowding degree selected. By using immune genetic algorithm to calculate the optimal path scheduling parameters, the order of goods pickup is exchanged according to the parameters so as to obtain approximate output action instructions in the near state, with the transport vehicle scheduled according to this action instruction for a completion of the planning of the transport vehicle partition scheduling path. The experimental results show that under the scheduling path planned by the currently proposed method, the completion time of transportation vehicle tasks is relatively short, indicating that the method is characterized with a good application effect.

    参考文献
    相似文献
    引证文献
引用本文

刘冰洁.大规模自动分拣仓库运输车分区调度路径规划[J].湖南工业大学学报,2025,39(5):82-88.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-07
  • 出版日期:
文章二维码