基于RSE-Vnet卷积网络的肺结节分割方法研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

湖南省自然科学基金资助项目(2023JJ50166)


Research on Lung Nodule Segmentation Method Based on RSE-Vnet Convolutional Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在细粒度图像的分割任务中容易出现欠分割与漏检的问题,提出一种改进的端到端3D分割算法——RSE-Vnet。加入Res2net网络捕获不同结节的多尺度细粒特征,为网络馈送更多精准的结节位置信息;同时残差连接避免了网络退化问题,建立了结节数据驱动模型;注意力机制能够有效为重要特征通道自适应加权,减少背景图像的干扰。构建了的方法在一定程度上解决了多类型结节欠分割和漏检问题,最终在LUNA16数据集中得以验证,模型DSC提升了7%,检测灵敏度提升了6%。

    Abstract:

    In view of the flaws of under-segmentation and missed detection in fine-grained image segmentation tasks, an improved end-to-end 3D segmentation algorithm, RSE-Vnet, has thus been proposed. With Res2net network incorporated, multi-scale fine-grained features of different nodules can be captured, thus feeding more accurate nodule location information to the network. Meanwhile, residual connections help to avoid network degradation issues, thus establishing a data-driven model for nodules. The attention mechanism can effectively weight important feature channels so as to reduce the interference of background images, with the constructed method solving the problem of under-segmentation and missed detection of multiple types of nodules to some extent. Finally, it can be verified in the LUNA16 dataset, with a 7% increase in model DSC and a 6% increase in detection sensitivity specifically.

    参考文献
    相似文献
    引证文献
引用本文

闫永强,秦 斌.基于RSE-Vnet卷积网络的肺结节分割方法研究[J].湖南工业大学学报,2025,39(5):46-51.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-07
  • 出版日期:
文章二维码