基于证据理论的在线健康社区医生回答群决策方法研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.1

基金项目:

国家自然科学基金资助青年项目(71801090);湖南省自然科学基金资助面上项目(2023JJ30220);湖南省教育厅科研基金资助重点项目(23A0440);湖南省自然科学基金资助项目(2023JJ50203)


Research on the Decision-Making Method of Online Health Community Doctor Response Group Based on Evidence Theory
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在复杂群决策环境下,针对在线健康社区中体量庞大且良莠不齐的医生回答择优问题,基于证据理论,结合文本分析法与复杂网络分析法,提出了一种推荐最优医生回答的分析框架。首先,通过python获取在线健康社区中医生的回答数据,并对数据进行预处理;其次,运用TextRank主题模型分析医生回答文本中表达的主题,将提取主题后的医生回答作为证据,运用证据理论方法对证据间的信任度和冲突度进行测度,并以此得到证据的初步得分;再次,基于回答的冲突因子构建医生关联网络,进而根据网络结构特征确定专家权重;最后,结合专家权重重新调整证据初步得分,得到方案的最终得分,从而选出最优方案。比较分析结果表明,经典证据理论决策结果与专家决策结果的一致率为71.4%,而本方法决策结果的一致率达85.7%,准确率提高了14.3%。

    Abstract:

    In a complex group decision-making environment, an analysis framework has been proposed based on evidence theory, combined with text analysis and complex network analysis, for a recommendation of the optimal doctor response for the problem of selecting the best answer among doctors with large and uneven quality in online health communities. Firstly, the response data of medical students in online health communities can be obtained through Python and pre-processed data. Secondly, the TextRank topic model is used for an analysis of the topics expressed in the doctor response text, with the extracted topics used as evidence to measure the trust and conflict between the evidence by adopting evidence theory methods, thus obtaining a preliminary score for the evidence based on this. Thirdly, a doctor association network is constructed based on the conflict factors of the responses, with expert weights determined according to the network structure characteristics. Finally, by adjusting the preliminary score of the evidence based on expert weights, the final score of the plan can be obtained, with the optimal plan selected accordingly. The consistency rate between the decision results of classical evidence theory and expert decision results is 71.4%. The consistency rate of the decision results of this method reaches 85.7%, and the accuracy has been improved by 14.3%.

    参考文献
    相似文献
    引证文献
引用本文

邹 筱,刘垣春,周 欢,袁 义.基于证据理论的在线健康社区医生回答群决策方法研究[J].湖南工业大学学报,2025,39(3):73-81.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-23
  • 出版日期:
文章二维码