一种基于改进YOLOv5s的车道线检测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省高校教学改革研究基金资助项目(HNJG-2021-0711)


Research on an Improved YOLOv5s-Based Lane Line Detection Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高车道线检测的实时性与准确性,在机器学习的框架下,提出了一种基于改进的YOLOv5s模型检测方法。该方法在图像预处理后增加了一个二值化通道与原图像一起更新数据集;为了高效提取车道线特征,加入anchor-free改进其锚框问题;为节省GPU内存、增强机器对目标的识别能力,采用mixup与mosaic结合的方式增强数据;为加快收敛速度和提高识别准确率,将损失函数改进为EIOU。实验结果表明,所提检测算法能够实现较为准确的车道线检测,实时性和准确性比YOLOv3的高很多,mAP增加了约30%,与YOLOv5s相比,其mAP约增加了11%,且改进方法具有良好的鲁棒性。

    Abstract:

    In view of an improvement of the real-time and accuracy of lane detection, a detection method based on an improved YOLOv5s model has been proposed under the framework of machine learning. A binarization channel is added to update the data set with the original image after image preprocessing, with anchor-free dded to improve its anchor frame, thus extracting lane line features efficiently. Meanwhile, mixup and mosaic are used to enhance data so as to save GPU memory and enhance the machine's ability to recognize targets, and the loss function is improved to EIOU in order to accelerate the convergence speed and improve the recognition accuracy. Experimental results show that the proposed algorithm can achieve a more accurate lane line detection, and with the mAP increasing by about 30%, its real-time performance and accuracy are much higher than those of YOLOv3 Compared with YOLOv5s its mAP increases by about 11%, thus verifying the good robustness of the improved method.

    参考文献
    相似文献
    引证文献
引用本文

韩 逸,舒小华,杨明俊.一种基于改进YOLOv5s的车道线检测方法[J].湖南工业大学学报,2022,36(3):51-58.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-10
  • 出版日期: 2022-05-01
文章二维码