基于Tukey怀疑度模型旅游线路M估计协同推荐
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家开放大学科研基金资助项目(G16A2001Z),厦门城市职业学院第五批校企合作课程基金资助项目(xqkc2017119)


Tukey Skeptical Model Based on M Estimation of Collaborative Recommendation Algorithm for Tourist Routes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高旅游线路推荐结果的有效性,降低干扰数据对推荐结果的影响,提出一种基于图基(Tukey)检验的M估计游客怀疑度模型的旅游线路协同推荐方法。首先,基于游客兴趣偏好构建旅游景点路线推荐算法框架,并基于k-距离的游客怀疑度构建可靠邻居模型;其次,针对提出的模型,提出一种基于图基检验M估计的鲁棒矩阵分解算法,构建游客特征矩阵和项目特征矩阵,通过调整游客间的相似性,减少干扰配置项目对特征矩阵鲁棒估计的影响;最后,在网爬数据集上进行仿真测试。测试结果显示,所提算法具有更高的游客整体满意度、更低的游客痛苦度,并且旅游景点路线多样化效果更好。

    Abstract:

    In order to improve the effectiveness of tourist routes recommended results, and reduce the influence of interference data on the recommendation results, a proposal has been made of Tukey skeptical model based on M estimation of collaborative recommendation algorithm for tourist routes. Firstly, a framework of scenic route recommendation algorithm is to be constructed based on interest preferences of tourists, and a reliable neighbor model is to be constructed based on k-distance skepticism. Secondly, according to the proposed model, we propose a decomposition algorithm of matrix estimation based on robust Tukey M, thus constructing the user feature matrix and project feature matrix. By adjusting the similarity between tourists, the influence has been reduced of interference configuration items on the robust estimation of the characteristic matrix. Finally, the simulation test on the web crawl data set shows that the proposed algorithm is characterized with such advantages as with a higher overall tourist satisfaction, lower tourist pains, and better diversity of tourist attractions.

    参考文献
    相似文献
    引证文献
引用本文

冯 莉.基于Tukey怀疑度模型旅游线路M估计协同推荐[J].湖南工业大学学报,2018,32(4):67-73.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-03-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-07-13
  • 出版日期:
文章二维码