Abstract:A research has been conducted on the fluidization behaviors of ZnO and CuO composite nanoparticles, added with FCC coarse particles of three different particle sizes (catalytic cracking catalysts). An observation of the whole fluidization process, with the aid of a high-speed camera, has been made for a detailed analysis of the agglomeration collision and fragmentation, and agglomeration components as well. The results show that the fluidization performance of the composite nanoparticles can be improved significantly with the addition of FCC coarse particles. Moreover, compared with the other two kinds of coarse particles FCC2 or FCC1, a more significant effect can be achieved with the addition of FCC3 in the process. With the increase of the addition amount of FCC coarse particles, the improvement of the fluidization performance of the composite nanoparticles becomes more obvious. Thus, it can be concluded that the mixing uniformity of nanoparticles is an important factor that influence the fluidization performance of ZnO and CuO composite nanoparticles.