改进的模糊C-均值算法在图像分割中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(61170102),湖南省教育厅重点基金资助项目(12A042)


Application of Improved Fuzzy C-Means Algorithm in Image Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的模糊C-均值算法在图像分割中存在的缺陷,提出了一种基于点密度函数加权的模糊C-均值聚类算法。将图像像素的点密度函数作为权值,并依据类间相关度定义了一个聚类有效性函数用以确定最佳聚类数,结合聚类有效性完成对图像的分割。理论分析和对比试验表明,该算法在一定程度上克服了模糊均值算法的缺陷,在图像分割中具有良好的分类精度。

    Abstract:

    For the defects of traditional fuzzy C-means algorithm in image segmentation, a weighted fuzzy C-means clustering algorithm based on dot density function are proposed. Takes the dot density function of image pixels as the weight, and on the basis of inter-class correlation defines a cluster validity function to determine the optimal number of clusters and combines with cluster validity to complete the effective image segmentation. Theoretical analysis and comparative experiments show that the algorithm overcomes the shortcomings of fuzzy means algorithm to some extent and has good classification accuracy in image segmentation.

    参考文献
    相似文献
    引证文献
引用本文

周 丹,肖满生,刘丽红,姚慧丹.改进的模糊C-均值算法在图像分割中的应用[J].湖南工业大学学报,2014,28(5):79-83.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-03-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-09
  • 出版日期:
文章二维码