Abstract:Based on three hyperelastic rubber material constitutive models of Mooney-Rivlin, Ogden 3 order and Van der Waals, and taking into consideration of influencing factors of load frequency, load amplitude and load mean value,the finite element models of rubber damping brackets of wind driven generator were established respectively and the dynamic properties of rubber damping brackets were made numerical simulation. Through rubber brackets dynamic bearing test, the effects of constitutive models of different rubber materials on simulation accuracy of rubber elastic parts were analyzed. The analysis of rubber damping bracket simulation and dynamic bearing test result error both indicated that Van der Waals model was suitable for compressing and shearing deformation load cases, Mooney-Rivlin model was for small or medium deformation load cases and Ogden 3 order model was for large deformation load cases. The appropriate rubber material constitutive model needs to be selected to improve the precision of FEA according to load cases.