针对小目标垃圾检测的 YOLOv8网络结构改进与性能验证
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183;TP391.4;X799.3

基金项目:

湖南省自然科学基金资助项目(2025JJ70057)


Improved YOLOv8 Structure for Detecting Small Garbage Objects and Its Performance Validation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为攻克复杂城市环境下的垃圾检测难题,尤其是在垃圾目标较小、背景繁杂的场景,提出一种基于YOLOv8的改进垃圾检测算法YOLO-SPRL。首先,引入SPD-Conv模块并增加P2检测层,删除P5检测层,以增强模型对小目标垃圾物体的检测能力。其次,在特征金字塔P3层嵌入矩形自校准模块(RCM),抑制背景噪声,消除复杂背景的干扰。最后,在模型颈部引入可分离多级卷积核注意力模块(LSKA),在降低计算复杂度的同时强化深度特征融合能力,在减小模型体积的同时提高检测精度。在VisDrone和自建街景垃圾数据集上的实验结果显示,YOLO-SPRL在VisDrone数据集上的mAP@0.5达到38.91%,相较于基准模型提升了4.22%;在自建数据集上亦展现出良好的鲁棒性和小目标识别能力。本研究所提出的集成改进策略有效提升了复杂场景下的垃圾检测性能,YOLO-SPRL在精度、速度和模型体积之间实现了良好的平衡,具备在嵌入式移动设备上部署的可行性,为城市智能环卫系统的实时监测与管理提供了可靠的技术支撑。

    Abstract:

    To address the challenges in garbage detection in complex urban environments, particularly the difficulties caused by small target sizes and cluttered backgrounds, an improved algorithm named YOLO-SPRL is proposed for small target garbage detection based on YOLOv8. First, the SPD-Conv module is incorporated and a P2 detection layer is added while the P5 detection layer is removed to enhance the detection capability for small garbage objects. Second, a rectangular self-calibration module (RCM) is integrated into the P3 layer of the feature pyramid to suppress background noise and eliminate interference from complex backgrounds. Finally, a learnable separable kernel attention (LSKA) module is introduced in the model’s neck, which reduces computational complexity while strengthening deep feature fusion capability. This optimization reduces model size while maintaining improved accuracy, laying the theoretical groundwork for deployment on embedded devices. Experiments on the VisDrone and custom street view garbage datasets demonstrate that YOLO-SPRL achieves an mAP@0.5 of 38.91%, representing an improvement of 4.22% compared to the baseline model. Additionally, the algorithm exhibits excellent robustness and strong small target recognition capability on a custom drone garbage dataset. The integrated improvement strategy proposed in this study effectively enhances garbage detection performance in complex scenarios. YOLO-SPRL achieves an optimal balance among accuracy, speed, and model size, demonstrating the feasibility for deployment on embedded mobile devices, and providing a reliable technical solution for real-time monitoring and management in urban intelligent sanitation systems.

    参考文献
    相似文献
    引证文献
引用本文

何达维,吴岳忠,陈玲姣,韩 梅.针对小目标垃圾检测的 YOLOv8网络结构改进与性能验证[J].包装学报,2026,18(2):103-109. 10.20269/j. cnki.1674-7100.2026.2013.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码