基于YOLOv5的废旧塑料瓶双目视觉识别定位方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4;TB489

基金项目:

黑龙江省属高等学校基本科研业务费项目(2023-KYYWF-1011)


Binocular Visual Identification and Positioning Method for Used Plastic Bottles Based on YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高废旧塑料瓶视觉识别定位的准确度,提出一种基于改进YOLOv5的轻量化双目视觉目标检测算法。首先,在主干网络中分别使用GhostBottleNeck模块和GhostNetV2模块替换原始的CBS和C3模块;其次,在颈部网络引入GSConv卷积和基于GSConv的VOVGCSP结构。通过自制数据集训练改进模型,并结合双目相机标定与立体匹配技术实现目标测距。结果表明:1)改进后的YOLOv5模型与原模型对比,准确率由87.92%提升到95.39%,参数量由7 012 888下降到5 933 320,帧率由96 帧/s提升到105 帧/s。改进网络有效减少了模型参数量,且准确率提高了7.47%。2)通过双目测距实验得到,检测的最大误差在7 mm左右,相对误差在1%以内,此误差符合要求。该方法的识别定位速度和精准度均达到实时处理要求,能为智能回收设备开发提供技术支持。

    Abstract:

    In order to improve the accuracy of visual recognition and localization of used plastic labeled bottles, a lightweight binocular visual target detection algorithm based on the improved YOLOv5 is proposed. Firstly, in the backbone network, the original CBS and C3 modules are respectively replaced by the GhostBottleNeck module and the GhostNetV2 module. Secondly, GSConv and GSConv-based VOVGCSP modules are introduced into the neck network. The dataset is trained by field real measurements to be used for training the improved YOLOv5 model. Based on the optimized algorithm, a binocular camera is used to investigate the used plastic bottle ranging system. Results show that 1) the improved YOLOv5 model increases the accuracy from 87.92% to 95.39%, the number of parameters decreases from 7 012 888 to 5 933 320, and the FPS improves from 96 frame/s to 105 frame/s when comparing with the original model. The replacement network effectively reduces the number of parameters of the model, and the accuracy of the improved model improves by 7.47%. 2) The maximum error of detection is about 7 mm through binocular ranging experiment, and the relative error is within 1%, which meets the requirements. The identifying and locating accuracy both meet the requirements of real-time processing, which can provide technical support for the development of intelligent recycling equipment.

    参考文献
    相似文献
    引证文献
引用本文

李欣妍,巩 雪,付 斌,崔功卓,刘京宇,杨鸿阳.基于YOLOv5的废旧塑料瓶双目视觉识别定位方法[J].包装学报,2026,18(1):98-106. 10.20269/j. cnki.1674-7100.2026.1011.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-04
  • 出版日期:
文章二维码