基于多尺度频域特征与空间注意力的多器官分割网络
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41;R318

基金项目:

湖南省自然科学基金资助项目(2020JJ4276)


A Multi-Organ Segmentation Network Based on Multi-Scale Frequency Features and Spatial Attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决多器官分割中受大小不一、形状多样、几何结构复杂等因素的影响,提出了一种基于MFSA-Net(multi-scale frequency spatial attention network)的多器官分割方法。利用多层级、多方向频域分解获取不同尺度的多器官频域特征表达,以有效扩大感受野并提高网络浅层语义特征的辨识性;提出多层次门控注意力机制,实现局部细粒度特征和长距离依赖的融合,聚焦关键目标并抑制背景区域;针对器官的结构差异和多样性,设计了方向增强双分支空间注意力模块,以深度融合边缘像素的空间位置和灰度分布特征,提高模型的空间特性捕获能力。实验结果表明,所提方法可以有效分割尺度差异大、结构复杂的多器官,在Synapse和ACDC数据集的平均DSC分别达到了81.66%和91.61%,优于现有主流方法。

    Abstract:

    To address the influences of factors such as different sizes, diverse shapes, and complex anatomical structures in multi-organ segmentation, a novel multi-organ segmentation method based on MFSA-Net (multi-scale frequency spatial attention network) is proposed. The network utilizes multi-level and multi-directional frequency decomposition to extract frequency-domain features of organs at different scales, which effectively expands the receptive field and enhances the discriminability of shallow semantic features. Moreover, a multi-level gated attention mechanism is introduced to achieve the integration of local fine-grained features and long-range dependencies, enabling the network to focus on critical regions while suppressing background noise. To address the structural diversity and variation among organs, a direction-enhanced dual-branch spatial attention module is designed to deeply integrate the spatial position and gray-scale distribution features of edge pixels, thereby improving the model’s spatial representation capability. Experimental results demonstrate that the proposed method can effectively segment multiple organs with large scale variations and complex structures, achieving average Dice similarity coefficient (DSC) scores of 81.66% and 91.61% on the Synapse and ACDC datasets respectively, which outperforms existing mainstream methods.

    参考文献
    相似文献
    引证文献
引用本文

曾业战,康运成,王 帅,欧阳洪波,钟春良,黄 钊.基于多尺度频域特征与空间注意力的多器官分割网络[J].包装学报,2026,18(1):88-97. 10.20269/j. cnki.1674-7100.2026.1010.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-04
  • 出版日期:
文章二维码