基于全息加密与密集残差网络的图像隐写
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TB489;TP309.7

基金项目:

本研究成果受国家新闻出版署智能与绿色柔版印刷重点实验室招标课题资助(ZBKT202301)


Research on Packaging Security Steganography Based on Holographic Encryption and Dense Residual Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高图像隐写容量、不可见性和安全性,提出基于全息加密与密集残差网络的图像隐写模型CryptoStegoNet。该模型先将秘密信息转换为二维码,再经全息加密技术处理,嵌入载体图像中,生成高质量隐写图像,反之则提取秘密信息。DenseResidualGenerator模块由跳跃连接、DenseBlock和DenseResBlock组成。此外,通过引入FID(Fréchet inception distance)损失来优化损失函数,以更好地引导网络训练,使生成的图像在视觉和统计上更接近载体图像。实验结果表明:与当前其他先进的隐写方法相比,本模型在视觉质量、隐写性能和安全性等多个指标上均实现了显著提升。

    Abstract:

    To enhance the capacity, invisibility, and security of image steganography, an image steganography model named CryptoStegoNet based on holographic encryption and dense residual networks is proposed. The model first converts the secret information into a QR code, then processes it with holographic encryption technology, and embeds it into the cover image to generate a high-quality steganographic image. The secret information can be extracted in the reverse process. The DenseResidualGenerator module, which consists of skip connections, DenseBlock, and DenseResBlock, is a key component of this model. Additionally, by introducing the FID (Fréchet inception distance) loss, the loss function is optimized to better guide the network training, making the generated images visually and statistically closer to the cover images. Experimental results demonstrate that compared with other state-of-the-art steganography methods, the model achieves significant improvements in visual quality, steganographic performance, and security.

    参考文献
    相似文献
    引证文献
引用本文

王晓红,马春运,石明光.基于全息加密与密集残差网络的图像隐写[J].包装学报,2025,17(3):46-54.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码