人工神经网络在肉类产品质量分析中的应用研究进展
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TS207.3;TP391.41

基金项目:

湖南省自然科学基金资助项目(2021JJ30218);湖南省高等学校行业应用能力建设项目(15CY003);湖南省研究生科研创新项目(CX20231098)


Application of Artificial Neural Networks in Meat Product Quality Analysis: A Review
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的肉类质量评估方法在应对现代食品安全和营养标准的复杂要求时存在局限性。为解决这一问题,科研人员逐渐引入电子鼻和电子舌等先进技术。这些技术因其快速、成本效益高的特点,已在肉类质量的定性分析中取得一定成果,然而这类技术难以满足更高精度的需求。相比之下,人工神经网络(ANN)凭借其强大的非线性映射能力,在食品质量检测领域展现出显著优势,尤其是在肉类质量评估和无损检测方面。本文综述了ANN在肉类质量评估中的经典应用架构,系统总结了其在鲜肉、鱼虾类及肉制品等的应用成果。未来的研究重点是构建更为精确的预测模型、实现实时监测以及应用多模型融合技术,以进一步提升肉类产品质量检测的智能化水平。

    Abstract:

    Traditional methods of meat quality assessment face limitations in addressing the complex demands of modern food safety and nutritional standards. To overcome these challenges, researchers have increasingly introduced advanced technologies such as electronic noses and electronic tongues. These technologies, known for their speed and cost-effectiveness, have shown promising results in the qualitative analysis of meat products, but they are difficult to meet the demands for higher precision. In contrast, artificial neural networks (ANN), with their powerful nonlinear mapping capabilities, have demonstrated significant advantages in the field of food quality assessment, especially in meat quality evaluation and non-destructive testing. The classic application architectures of ANNs are reviewed in meat quality evaluation and their practical applications in various meat products are systematically summarized, including fresh meat, fish, shrimp, and processed meats. Future research may focus on developing more precise predictive models, achieving real-time monitoring, and employing multi-model fusion techniques to further enhance the intelligence of meat product quality assessment.

    参考文献
    相似文献
    引证文献
引用本文

钟云飞,周雯暄,陈宇旸,李晓璇,刘丹飞.人工神经网络在肉类产品质量分析中的应用研究进展[J].包装学报,2024,16(6):92-100.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-02
  • 出版日期:
文章二维码