MNTH-YOLOv8:一种用于食品包装中蚊虫高效检测的深度学习方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

本研究成果受国家新闻出版署智能与绿色柔版印刷重点实验室招标课题资助(ZBKT202301)


MNTH-YOLOv8: A Deep Learning Approach for Efficient Mosquito Detection in Food Packaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    食品安全一直是社会关注的焦点,而在食品包装印刷生产过程中,蚊虫的夹杂会对食品安全构成威胁。针对食品包装质检过程中蚊虫检测仍是人工筛查的现状,以及蚊虫目标尺寸小、所处背景复杂的特点,提出了一种基于深度学习的全自动MNTH-YOLOv8检测方法。该方法是在YOLOv8强大的目标检测功能基础上,结合通道特征部分卷积模块、SimAM注意力机制和改进的特征融合模块,并以CIoU与归一化Wasserstein距离作为定位回归损失函数的优化模型。对真实数据集的检测结果表明,MNTH-YOLOv8表现出显著优势,不仅有效提高了小目标蚊虫的检测精度,还在保持检测速度的前提下减少了参数量。MNTH-YOLOv8在食品包装中蚊虫的实时检测应用上拥有广阔前景。

    Abstract:

    Food safety has always been a focus of social concern. However, the presence of mosquitoes and other insects during the food packaging and printing process poses a serious challenge to food safety. Aiming at the current situation of manual screening for mosquitoes and other insects during food packaging quality inspection, and account of the small size of insect targets and the complexity of their backgrounds, a fully automatic MNTH-YOLOv8 detection method based on deep learning was proposed. this method was based on the powerful object detection capability of YOLOv8, combined with channel-wise partial convolution modules and SimAM attention mechanism, with CIoU and normalized Wasserstein distance as the localization regression loss function. Experimental results demonstrated significant advantages of the proposed method in real datasets. It not only effectively improved the detection accuracy of small insect targets but also significantly reduced the parameter count while maintaining detection speed, indicating its great prospect in the application of real-time detection of mosquitoes and other insects in food packaging.

    参考文献
    相似文献
    引证文献
引用本文

王晓红,张 微. MNTH-YOLOv8:一种用于食品包装中蚊虫高效检测的深度学习方法[J].包装学报,2024,16(3):91-98.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-12
  • 出版日期:
文章二维码