MNTH-YOLOv8:一种用于食品包装中蚊虫高效检测的深度学习方法
作者:
基金项目:

本研究成果受国家新闻出版署智能与绿色柔版印刷重点实验室招标课题资助(ZBKT202301)


MNTH-YOLOv8: A Deep Learning Approach for Efficient Mosquito Detection in Food Packaging
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    食品安全一直是社会关注的焦点,而在食品包装印刷生产过程中,蚊虫的夹杂会对食品安全构成威胁。针对食品包装质检过程中蚊虫检测仍是人工筛查的现状,以及蚊虫目标尺寸小、所处背景复杂的特点,提出了一种基于深度学习的全自动MNTH-YOLOv8检测方法。该方法是在YOLOv8强大的目标检测功能基础上,结合通道特征部分卷积模块、SimAM注意力机制和改进的特征融合模块,并以CIoU与归一化Wasserstein距离作为定位回归损失函数的优化模型。对真实数据集的检测结果表明,MNTH-YOLOv8表现出显著优势,不仅有效提高了小目标蚊虫的检测精度,还在保持检测速度的前提下减少了参数量。MNTH-YOLOv8在食品包装中蚊虫的实时检测应用上拥有广阔前景。

    Abstract:

    Food safety has always been a focus of social concern. However, the presence of mosquitoes and other insects during the food packaging and printing process poses a serious challenge to food safety. Aiming at the current situation of manual screening for mosquitoes and other insects during food packaging quality inspection, and account of the small size of insect targets and the complexity of their backgrounds, a fully automatic MNTH-YOLOv8 detection method based on deep learning was proposed. this method was based on the powerful object detection capability of YOLOv8, combined with channel-wise partial convolution modules and SimAM attention mechanism, with CIoU and normalized Wasserstein distance as the localization regression loss function. Experimental results demonstrated significant advantages of the proposed method in real datasets. It not only effectively improved the detection accuracy of small insect targets but also significantly reduced the parameter count while maintaining detection speed, indicating its great prospect in the application of real-time detection of mosquitoes and other insects in food packaging.

    参考文献
    [1]王耀南,刘学兵,张 辉,等. 机器视觉技术在包装行业研究进展与应用综述[J]. 包装学报,2022,14(2):1-14, 107. WANG Yaonan,LIU Xuebing,ZHANG Hui,et al. Research Progress and Application Review of Machine Vision Technology in Packaging Industry[J]. Packaging Journal,2022,14(2):1-14,107.
    [2]KURILOVá V,GOGA J,ORAVEC M,et al. Support Vector Machine and Deep-Learning Object Detection for Localisation of Hard Exudates[J]. Scientific Reports,2021,11:16045.
    [3]TAUNK K,DE S,VERMA S,et al. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification[C]//2019 International Conference on Intelligent Computing and Control Systems (ICCS). Madurai:IEEE,2019:1255-1260.
    [4]ALBANESE A,NARDELLO M,BRUNELLI D. Automated Pest Detection with DNN on the Edge for Precision Agriculture[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2021,11(3):458-467.
    [5]MEKHA J,PARTHASARATHY V. An Automated Pest Identification and Classification in Crops Using Artificial Intelligence: A State-of-Art-Review[J]. Automatic Control and Computer Sciences,2022,56(3):283-290.
    [6]LIU J,WANG X W. Plant Diseases and Pests Detection Based on Deep Learning: A Review[J]. Plant Methods,2021,17(1):22.
    [7]TURKOGLU M,YANIKO?LU B,HANBAY D. PlantDiseaseNet: Convolutional Neural Network Ensemble for Plant Disease and Pest Detection[J]. Signal, Image and Video Processing,2022,16(2):301-309.
    [8]WAHEED H,ZAFAR N,AKRAM W,et al. Deep Learning Based Disease, Pest Pattern and Nutritional Deficiency Detection System for “Zingiberaceae” Crop[J]. Agriculture,2022,12(6):742.
    [9]朱香元,聂 轰, 周 旭. 基于TPH-YOLOv5和小样本学习的害虫识别方法[J]. 计算机科学,2022,49(12):257-263. ZHU Xiangyuan,NIE Hong,ZHOU Xu. Pest Identification Method Based on TPH-YOLOv5 Algorithm and Small Sample Learning[J]. Computer Science,2022,49(12):257-263.
    [10]DING W G,TAYLOR G. Automatic Moth Detection from Trap Images for Pest Management[J]. Computers and Electronics in Agriculture,2016,123(C):17-28.
    [11]LIU Z Y,GAO J F,YANG G G,et al. Localization and Classification of Paddy Field Pests Using a Saliency Map and Deep Convolutional Neural Network[J]. Scientific Reports,2016,6:20410.
    [12]GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV). Santiago:IEEE,2015: 1440-1448.
    [13]REDMON J,DIVVALA S,GIRSHICK R,et al. You only Look Once: Unified, Real-Time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE,2016:779-788.
    [14]LI K P,ZHU J S,LI N Q,et al. Insect Detection and Counting Based on YOLOv3 Model[C]//2021 IEEE 4th International Conference on Electronics Technology (ICET). Chengdu:IEEE,2021:1229-1233.
    [15]SONG L M,LIU M Y,LIU S H,et al.Pest Species Identification Algorithm Based on Improved YOLOv4 Network[J]. Signal, Image and Video Processing,2023,17(6):3127-3134.
    [16]DAI M,DORJOY M M H,MIAO H,et al. A New Pest Detection Method Based on Improved YOLOv5m[J]. Insects,2023,14(1): 54.
    [17]SUBAKAN C,RAVANELLI M,CORNELL S,et al. Attention Is All You Need in Speech Separation[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto:IEEE,2021:21-25.
    [18]KONDO Y,NUMADA M,KOSHIMIZU H. A Fast Hough Transform Based on C3TR Using Shift Operation[C]//2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV). Mokpo:IEEE,2015:1-6.
    [19]THOMAS H,QI C R,DESCHAUD J E,et al. KPConv: Flexible and Deformable Convolution for Point Clouds[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul:IEEE,2019:6410-6419.
    [20]YANG L X,ZHANG R Y,LI L D,et al. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks[C/OL]//2021 International Conference on Machine Learning. [2023-12-03]. http://proceedings.mlr.press/v139/yang21o/yang21o.pdf.
    [21]WANG J W,XU C,YANG W,et al. A Normalized Gaussian Wasserstein Distance for Tiny Object Detection[EB/OL]. [2023-09-19]. http://arxiv.org/abs/2110.13389v2.
    [22]CHEN G,WANG H T,CHEN K,et al. A Survey of the Four Pillars for Small Object Detection: Multiscale Representation, Contextual Information, Super-Resolution, and Region Proposal[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems,2022,52(2):936-953.
    [23]AGARAP A F. Deep Learning Using Rectified Linear Units (ReLU)[EB/OL]. [2023-08-10]. http://arxiv.org/abs/1803.08375v2.
    [24]LIU S,QI L,QIN H F,et al. Path Aggregation Network for Instance Segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE,2018:8759-8768.
    [25]JIANG Y Q,TAN Z Y,WANG J Y,et al. GiraffeDet: A Heavy-Neck Paradigm for Object Detection[EB/OL]. [2023-05-17]. https://arxiv.org/pdf/2202.04256.pdf.
    相似文献
    引证文献
引用本文

王晓红,张 微. MNTH-YOLOv8:一种用于食品包装中蚊虫高效检测的深度学习方法[J].包装学报,2024,16(3):91-98.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-24
  • 在线发布日期: 2024-06-12
文章二维码