基于通道分组注意力的无监督图像风格转换模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市科学技术委员会科研计划基金资助项目(18060502500)


Unsupervised Image Style Conversion Based on Channel Grouping Attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决无监督图像风格转换模型输出结果的局部伪影和局部特征丢失问题,提出了一种基于通道分组注意力机制的图像风格转换模型。生成器部分采用通道分组注意力残差块,以增强生成器部分对于图像特征的提取以及有效特征的利用;鉴别器部分采用双鉴别器结构,利用增加的局部鉴别器增强对于生成图像细节的鉴别,利用多分辨率尺度的全局鉴别器增强生成图像的内容合理性与结构连贯性。实验结果表明:本模型比起BicycleGAN、MUNIT等模型不但体积更小,而且可以获得更高的NIMA美观度得分以及LPIPS多样性得分;在包装类产品的平面设计迁移应用任务中,本模型同样表现良好。

    Abstract:

    In order to solve the problem of local artifacts and local feature loss in the output of unsupervised image style conversion model, an image style conversion model based on channel grouping attention mechanism was proposed. In the generator part of the model, a channel grouping attention residual block was used to enhance the extraction of image features and the utilization of effective features. In the discriminator part of the model, a dual discriminator structure was adopted, the added local discriminator was used to enhance the identification of the generated image details, and the multi-resolution global discriminator was used to enhance the content rationality and structural coherence of the generated image. The experimental results show that the unsupervised model not only has smaller volume, but also can obtain higher NIMA aesthetic score and LPIPS diversity score than other methods such as BicycleGAN and MUNIT. The model also performs well in the graphic design migration application task of packaging products.

    参考文献
    相似文献
    引证文献
引用本文

孙铭一,孙刘杰,李佳昕.基于通道分组注意力的无监督图像风格转换模型[J].包装学报,2021,13(5):75-84.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-15
  • 出版日期:
文章二维码