基于判别字典在线学习的视觉跟踪
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省重点研发计划基金资助项目(2016GK2017)


Visual Tracking Based on Online Learning of Discriminant Dictionaries
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于判别字典在线学习的跟踪算法,通过将字典项与标签信息相结合,分类的字典既具有重构性,又具有鉴别性。为了增强模型判别能力,将分类器嵌入到目标表示模型中,依据重构误差和判别分类得分最终确定候选目标。字典学习阶段采用在线字典学习算法同时对字典和分类器进行更新,使模型能够适应目标外观和背景环境的动态变化。实验结果表明,该方法在大量遮挡、快速运动、强光和姿态变化的大部分测试中达到了比较满意的效果。

    Abstract:

    A tracking algorithm based on online learning of discriminant dictionary has been proposed, which combines dictionary items with label information, thus making the discriminant dictionary both reconstructive and discriminant. In order to enhance the discriminant ability of the model, the classifier is embedded in the target representation model, with its candidate target to be determined according to the reconstruction error and discriminant classification score. The online dictionary learning algorithm is used to update both the dictionary and the classifier in the process of learning, so that the model can adapt to the dynamic changes of the target appearance and background environment. The experimental results show that the proposed method achieves satisfactory results in most of such tests concerning large occlusion, fast motion, strong light and attitude change.

    参考文献
    相似文献
    引证文献
引用本文

司 元,朱文球.基于判别字典在线学习的视觉跟踪[J].包装学报,2019,11(2):87-96.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-06-13
  • 出版日期:
文章二维码