doi:10.3969/j.issn.1673-9833.2013.04.006

路基换填对正下方地铁隧道影响的数值分析

曾庆国,张 宁

(深圳市市政设计研究院有限公司 勘察院,广东 深圳 518029)

摘 要:采用平面应变有限元分析方法,结合工程实例,研究深圳地区路基换填对正下方地铁隧道的影响。一方面,通过数值模拟路基换填开挖、回填碾压,分析加、卸载过程隧道沉降及地基竖向应力的变化 规律,提出了优化设计和施工方案的方法;另一方面,分析隧道内同步沉降监测数据,验证了数值计算的 可靠性。

关键词: 平面应变有限元; 路基换填; 地铁隧道; 隧道沉降 中图分类号: U455.4 _______文献标志码: A _______文章编号: 1673-9833(2013)04-0029-05

Numerical Analysis of the Effect of Subgrade Soil Replacement on Metro Tunnel Underneath

Zeng Qingguo, Zhang Ning

(Survey Institute, Shenzhen Municipal Design & Research Institute Co., Ltd., Shenzhen Guangdong 518029, China)

Abstract: Applies plane-strain finite element method and combines the project instance to study the impact of subgrade soil replacement on the metro tunnel underneath. On one hand, analyzes the variation of tunnel settlements and subgrade vertical stresses under loading and unloading conditions based on numerical simulated excavating and back-filling and puts forward a method of optimized design and construction scheme. On the other hand, analyzes the tunnel synchronous settlement monitoring data and verifies the reliability of numerical calculation.

Keywords: plane-strain finite element subgrade soil replacement metro tunnel; tunnel settlement

0 引言

近年来,我国城市轨道交通飞速发展,其运营 期间对安全(如控制轨道结构沉降、变形及渗漏等) 的要求极高,给临近地铁的工程建设增加了新的难 度。基坑开挖对其下部的地铁区间隧道有明显影响, 由于隧道相对土层的刚度较大,隧道的变形以刚体 变位为主,且体现为竖向上抬^[1]。郑永来等人^[2]对轨 道交通上方大面积基坑开挖进行了三维分析,得出 对具体施工中轨道正上方的跳挖段宽的优化建议; 陈长江^[3]结合工程实例,针对基坑开挖引起下卧地 铁区间隧道上浮,进行了平面应变线弹性分析,得 出了控制地铁区间隧道变形的方法,即对隧道周围 土体加固或堆载,并提出了加固弹性模量及加载大 小的建议值。

路基换填开挖,实际上是在隧道上部卸载,此 过程会引起土体卸荷回弹,相应地引起隧道的回弹 变形;路基回填、振动碾压、路面结构施工等加载

收稿日期: 2013-05-24

作者简介:曾庆国(1982-),男,河南信阳人,深圳市市政设计研究院有限公司工程师,硕士,主要从事岩土工程设计及 咨询工作,E-mail: macaulish1314@qq.com

过程再次改变隧道顶原有土应力。当复合地基基底 应力变化时,土体位移将扩散至地铁隧道,对其受 力状态产生影响,严重时可引起隧道结构的位移和 断面的不均匀收敛,造成隧道衬砌开裂渗水、轨道 三角坑高低差等,进而影响地铁运营安全,尤其是 埋深相对较浅的地铁出入线隧道表现更明显。控制 开挖引起地铁隧道上浮的主要方法有分块开挖、及 时浇筑垫层和底板、减少开挖暴露时间等^[4-6]。

本文通过建立平面有限元数值分析模型,模拟 隧道正上方循环卸载、加载过程,动态分析路基开 挖、回填碾压过程对隧道结构的影响;同时结合隧 道内同步监测数据验证数值计算的可靠性,为优化 设计和施工提供有益参考。

1 工程概况

拟建道路为城市 I 级次干道,设计车速 40 km/h。 平面设计红线宽 50 m,标准横断面: 6.0 m (人行 道)+1.5 m (绿化带)+2.5 m (非机动车道)+4.0 m (绿化分隔带)+22 m (机动车道)+4.0 m (绿化分隔 带)+2.5 m (非机动道)+1.5 m (绿化带)+6.0 m (人 行道)=50 m。

1.1 地质条件

根据钻探结果,场地内自上而下土层及其层厚 依次为:填土(层厚0.5~13.2 m)、淤泥(层厚6.7 m), 以下土层分别为冲洪积粘土、残积砾质黏性土及全 风化~中风化花岗岩。现有填土均为新近回填,结 构松散、承载力较低;分布的淤泥为软弱土,工程 地质性质极差且厚度不均。因此,必须对场地淤泥 及填土等软弱地基进行加固处理。计算所采用的岩 土层参数见表1。

				1		
шты	重度 /	变形模量 /	渗透系数/	泊松	黏聚力/	内摩擦角/
宕土层	(kN • m ⁻³)	MPa	$(\mathbf{m} \cdot \mathbf{d}^{-1})$	比	kPa	(°)
填土	17.0	8.0	0.10	0.38	10	8
淤 泥	18.0	2.0	0.02	0.38	5	3
冲洪积	18.5	20.0	0.05	0.33	20	18

表1 岩土层工程参数

Table 1 Soil foundation parameters

柏土

1.2 路基与地铁相对位置关系

路基处理段位于地铁某明挖区间隧道正上方, 处理长度约280m,处理方式为:

1)采用水泥搅拌桩处理。主要针对隧道上方覆
 土深度 4~13 m 的区域,同时确保桩底与隧道结构轮
 廓线的安全距离为 3 m,处理长度约 150 m。

2)采用浅层换填处理。主要针对隧道上方覆土

深度不大于4m的区域,长度约130m,宽约22m。开 挖深度1.95m,回填1.2m厚石粉渣(压实度≥95%)、 土工格栅、碎石层厚0.3m及0.45m道路结构层。

换填段路基与地铁隧道平、纵断面位置关系如 图 1 和图 2 所示。

图2 换填段路基与隧道纵断面图

Fig. 2 Cross section of replacement subgrade and tunnel

1.3 路基处理技术要求

1) 沉降: 工后沉降量≤30 cm, 工后沉降差≤2‰。

2) 路基交工面:复合地基承载力≥120 kPa。

3)土基压实:同道路要求,土基回弹模量≥30 MPa。

2 路基换填对地铁结构影响的数值 模拟

考虑水泥搅拌桩施工对地铁的影响较小,且隧 道以残积土为持力层,部分区域存在淤泥层,换填 开挖减少上覆荷载产生卸荷回弹,引起隧道发生向 上的位移。本文数值分析主要针对隧道正上方换填 基槽开挖引起隧道回弹,路基碾压使隧道产生沉降 变形和附加压力两个方面,按照实际施工顺序进行 施工阶段分析。

2.1 计算模型

隧道结构的变形在土体开挖过程中相对较小, 在施工过程中其材料不会达到屈服状态,故计算中 用线弹性材料模拟隧道衬砌,采用梁单元,具体结 构参数选取见表2。

	Table 2Structural parameters of the tunnel								
结构 名称	单元 类型	尺寸/ mm	重度 / (_k N・m ⁻³)	弹性模量 / MPa	泊松比				
隧道衬砌	」 梁单元	400	25	3.45×10^{4}	0.167				

表り

隊道结构参数

采用 MIDAS/GTS 数值分析软件,通过实体建模 菜单形成二维模型;网格采用三角形网格,尺寸为 0.3~2 m,最终形成约10000个单元。材料属性模型全 貌及部分结构的局部网格模型如图3所示。

图3 有限元模型

Fig. 3 Finite element model

2.2 计算假定

1) 计算为二维平面有限元问题。

2) 岩土体本构模型采用 Mohr-Coulomb 弹塑性本 构模型,单元类型为三角形单元。

3)隧道结构采用弹性材料,单元类型为三角形 单元。

4) 迭代计算方法采用 Newton-Raphson 法。

5)收敛标准采用位移收敛标准。

6)弹塑性材料流动法则为相关联流动法则。

7) 压路机荷载根据 12 t 压路机底面尺寸和激振 力进行计算。底面尺寸为 4.8 m × 2.3 m,碾压宽度 2.1 m,激振力 270 kN,通过计算等效成 26.8 kPa的均 布荷载。

2.3 计算分析步骤

 1)初始应力场:计算地基初始应力场,激活地 铁结构单元。

2)施工步一:开挖至换填深度,钝化开挖部分 土体。

3)施工步二:施工搅拌桩和碎石垫层,回填石 粉渣。

4)施工步三:模拟交工面碾压工况,激活压路 机荷载。

2.4 计算结果分析

2.4.1 隧道沉降计算结果

路基开挖至换填深度时,隧道沉降计算结果见 图4;开挖后回填至交工面,并添加压路机荷载碾压 时,隧道沉降计算结果见图5。

Fig. 4 The tunnel settlement at the first construction step

图5 施工步三隧道沉降

Fig. 5 The tunnel settlement at the third construction step 从图4和图5可知,开挖至路基基底标高时,地 铁车辆段出入线隧道竖向位移4.4 mm(隆起)。路基 碾压过程会引起地铁车辆段出入线隧道轻微下沉, 最大下沉量为2.0 mm(即隧道隆起量较路基开挖至 基底时减小2.4 mm),且隧道结构整体表现为上浮。 2.4.2 地基竖向应力计算结果

对开挖前初始状态及开挖后回填至交工面时的 地基竖向应力分别进行计算,结果见图6和图7。

图6 初始地基竖向应力

图7 施工步二地基竖向应力 Fig. 7 The foundation vertical stress at the second construction step

从图6可知,受地铁结构的影响,地基初始应 力并不是水平向均匀分布,特别是在地铁正线左、 右线上方角部出现了应力集中。车辆段出入线顶 部角点土体竖向应力分别为102.0 kPa. 98.3 kPa; 区间隧道正线左线角点上方土体竖向应力分别为 276.6 kPa, 210.2 kPa; 右线角点上方土体竖向应力分 别为217.4 kPa, 264.4 kPa。受开挖卸荷后回填的影响, 地基应力较初始情况有所变化(见图7)。车辆段出入 线顶部角点土体竖向应力分别为68.3 kPa 53.9 kPa, 较 初始工况分别减小33.7 kPa和44.4 kPa;区间隧道正线 左线角点上方土体竖向应力分别为265.3 kPa, 195.5 kPa, 较初始工况分别减小11.3 kPa, 14.7 kPa; 右线角点上 方土体竖向应力分别为 175.7 kPa, 246.9 kPa, 较初始 工况分别减小41.7 kPa, 17.5 kPa。

路基碾压为新的加载过程,此施工步的地基竖 向应力计算结果见图8,换填开挖现场照片见图9。

2D ELEMENT STRESS Soil SYY Center -1.79e+000 1.50e+002 -2.98e+002 4.47e+002

图8 施工步三地基竖向应力 Fig. 8 The foundation vertical stress at the third construction step

图9 换填开挖现场照片 Fig. 9 In-situ photo of excavation and replacement of the foundation soil

从图 8 可知,受回填碾压及压路机荷载影响,车 辆段出入线顶部角点土体竖向应力分别为1078 kPa (较初始工况增大5.8 kPa) 95.3 kPa(较初始工况减小 3 kPa);区间隧道正线左线角点上方土体竖向应力分 别为274.8 kPa(较初始工况减小1.8 kPa) 218.6 kPa(较 初始工况增大 8.4 kPa);右线角点上方土体竖向应力 222.0 kPa(较初始工况增大4.6 kPa), 262.9 kPa(较初 始工况减小1.5 kPa)。整体来看,施工步三与初始工 况比较, 地基竖向应力变化幅度不大。

隧道内同步监测结果 3

考虑路基开挖与地铁运营时间的要求,在路基 施工期间,对正下方地铁隧道正线(左、右线)、出 入段线安装3台徕卡TCA2003自动化全站仪进行同 步监测。测点布设方式为: 左线7个断面, ZX-1~ZX-7; 右线5个断面, YX-1~ZX-5; 出入线9个断面, CRX-1~CRX-9),共计21个监测断面,断面间距15m。单 个监测断面布设3个观测点,其中1个隧道拱顶沉降 兼水平位移测点,2个道床沉降兼水平位移测点。测 点布设如图 10~12 所示。

图12 隧道内监测点照片 Fig. 12 Monitoring points inside the tunnel

同步监测结果显示,隧道出入线CRX-5断面1号 测点(拱顶处)沉降变化幅度较大,且主要表现为 上浮(如图13所示)。其中,土方开挖至路基底时最 大隆起量为3.95 mm,路基碾压过程有所下降,稳定 第4期

图13 隧道拱顶沉降监测曲线

Fig. 13 Settlement monitoring curve of the tunnel vault

4 结论

本文对路基换填对正下方地铁明挖隧道影响进 行了平面应变有限元分析,并结合施工期间隧道内 同步监测结果,可得如下结论:

1)在地铁隧道正上方 1.95 m 深度范围内进行浅 层换填,开挖过程隧道的最大回填量为 4.4 mm,碾压 使地铁结构产生的附加应力最大为 8 kPa,对地铁影 响较小;

2) 需采用小型压路机碾压,吨位不大于12t,碾 压时控制激振力不大于270kN;

3)应在换填开挖完成后及时回填反压,尽量减 少暴露时间。

参考文献:

[1] 周丁恒,蔡永昌,陈长江,等,基坑坑底加固对下卧地
 铁区间隧道上浮影响的研究[J].岩土工程学报,2008,30
 (增刊1): 95-99.

Zhou Dingheng, Cai Yongchang, Chen Changjiang, et al. Reinforcement Method of Control Displacement of Metro Tunnels Due to Excavation of Foundation Pits[J]. Chinese Journal Geotechnical Engineering, 2008, 30(S1): 95–99.

- [2] 郑永来,王金龙.轨道交通上方大面积基坑开挖三维问题分析[J].地下空间与工程学报,2009,5(2):277-282.
 Zheng Yonglai, Wang Jinlong. 3D Analysis in the Large Area Excavation Above the Shanghai Metro Tunnels[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(2):277-282.
- [3] 陈长江. 基坑开挖引起下卧地铁区间隧道上浮控制研究
 [J]. 城市轨道交通研究, 2009(9): 52-55.
 Chen Changjiang. Numerical Modeling of Foundation Pit Excavation on Metro Tunnel[J]. Urban Mass Transit, 2009
 (9): 52-55.
- [4] 王卫东,吴江斌,翁其平,基坑开挖卸载对地铁区间隧
 道影响的数值模拟[J].岩土力学,2004,25(增刊2):
 251-255.

Wang Weidong, Wu Jiangbin, Weng Qiping. Numerical Modeling of Affection of Foundation Pit Excavation on Metro Tunnel[J]. Rock and Soil Mechanics, 2004, 25(S2): 251– 255.

[5] 刘国彬,黄院雄,候学渊,基坑工程下已运行地铁区间 隧道上抬变形的控制研究与实践[J].岩石力学与工程学 报,2001,20(2):202-207.

Liu Guobin, Huang Yuanxiong, Hou Xueyuan. The Prediction and Control of Rebound Deformation of the Existed Tunnels Right Under Excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(2): 202– 207.

[6] 李志高,刘国彬,曾远,等.基坑开挖引起下方隧道的变形控制[J].地下空间与工程学报,2006,2(3):430-433.

Li Zhigao, Liu Guobin, Zeng Yuan, et al. Control Measures of Tunnel Displacement by Over-Excavation Unloading[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(3): 430–433.

(责任编辑:邓光辉)