doi:10.3969/j.issn.1673-9833.2013.02.002

火花放电下 SF。分解组分的红外光谱特性

朱怡霖¹,汪红梅¹,黄云光²,易亚杰¹

(1.长沙理工大学化学与生物工程学院,湖南长沙 410004; 2.广西电网公司电力科学研究院化学环保所,广西南宁 530023)

摘 要:在SF₆放电分解试验平台上,探究针-板绝缘缺陷下产生火花放电引起SF₆分解产生的特征组 分。在40 kV下进行96 h 放电试验,采用傅里叶变换红外光谱法进行检测,分析SF₆分解组分吸光度随时间 变化的规律。试验结果显示:间隙火花放电下,SF₆分解特征有SO₂,SO₂F₂,SOF₂;放电24 h 后,能明显检测 到SO₂,SO₅F₂,SOF₅, b 吸收峰。

关键词: SF₆; 火花放电; 傅里叶变换红外光谱仪; 红外吸收特性; 缺陷模型 中图分类号: TM213 文献标志码: A 文章编号: 1673-9833(2013)02-0006-05

Infrared Spectral Characteristics of SF₆ Decomposition Products in Spark Discharge

Zhu Yilin¹, Wang Hongmei¹, Huang Yunguang², Yi Yajie¹

(1. School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, China ;
 2. Chemistry & Environment Department, Guangxi Grid Electric Power Research Institute, Nanning 530023, China)

Abstract: On the SF₆ discharge decomposition experimental platform, the SF₆ decomposition product is explored under small spark discharge in needle-plate defect model. The discharge test is made for 96 h under 40 kV, and Fourier transform infrared spectroscopy was used to detect the decomposition product. It is found that the components are varied with discharge time, the gases of SO₂, SO₂F₂ and SOF₂ are obviously detected in the gap spark discharge and the absorption peaks of the gases are obtained after 24 h.

Keywords : SF₆; spark discharge; FTIR; infrared spectral characteristics; defect model

1 相关研究

SF₆组合封闭式电器 (gas insulated switchgear, GIS)因具有占地面积小,可靠性高,安全性能好 等优点被广泛应用^[1],其安全运行对整个电力系 统的稳定至关重要,一旦发生缺陷,必将造成重 大损失。GIS内部的故障多为放电所引起,所以对 GIS内部是否产生放电的监测是非常重要的。GIS 内部的放电类型有3种:电弧放电、火花放电、局 部放电^[2]。火花放电与局部放电相对能量较低,统 称为低能放电,其对设备的影响具有隐藏性,发生 低能放电后,设备仍然能正常运行,但是不排除放 电强度的加剧,最终引发事故。

目前,GIS设备放电检测方法^[3-4]主要有:脉冲电 流法^[3]、特高频法(ultra-high frequency, UHF)^[6]、超 声波法^[7]和分解气体检测法^[8]等。脉冲电流法应用时 间长,抗干扰性差,信噪比低,难以实现在线检测。 特高频法灵敏度高,抗干扰能力较强,并可实现在 线监测、模式识别及故障定位,但其定量标定和模 式识别等问题尚未得到解决。超声波法只能检测到

作者简介:朱怡霖(1987-),女,贵州黔南人,长沙理工大学硕士生,主要研究方向为电力用油(气), E-mail: 67055363@qq.com

收稿日期: 2013-01-10

很强烈的放电和机械振动,对于低能量的放电现象 难以达到检测要求。相比以上方法,分解气体检测 法具有不受电磁噪声、振动干扰和抗电磁干扰能力 强等优点,因此,该方法成为了国内外诊断 GIS 设备 缺陷的特征参量的研究热点^[9-10]。

分解气体检测法主要有检测管法、气相色谱法 和傅里叶变换红外吸收光谱法。相对于检测管法和 气相色谱法,傅里叶变换红外吸收光谱法具有检测 速度快、检测组分多、抗干扰能力强、吸光度和组 分体积分数呈线性关系等优点,能够应用于实时在 线监测^[11]。

目前,国内外研究者对局部放电进行了大量的 研究,研究结果表明:不同放电条件下,SF₆分解的 气体成分、体积分数及产生速率有差异。但是对火 花放电进行详细研究的较少。本文在SF₆试验放电分 解平台上,构建针-板缺陷模型模拟GIS中常见的固 定金属突出物缺陷,外施固定电压产生间隙火花放 电,利用傅里叶红外吸收光谱法^[12-14]系统分析火花 放电下SF₆气体分解的特征组分SOF₂,SO₂F₂,CF₄, SO₂,S₂OF₁₀,分析SOF₂等特征气体的体积分数与放 电时间之间的关联比对关系,为研制SF₆放电分解红 外在线监测系统提供理论依据。

2 试验原理

2.1 SF。在火花放电下的分解机理

火花放电使 SF_6 产生分解的主要原因是电子碰撞和热分解。当电子碰撞产生的能量大于 S - F 键能时,将导致 SF_6 分裂形成 SF_5 ,根据电子碰撞电离理论,电子碰撞可能会引发多级分解,形成 SF_4 , SF_3 , SF_7 等低氟化物。该分解过程如式(1)和(2)所示。

 $SF_6 \xrightarrow{c} SF_x + (6-x)F, x < 5;$ (1)

$$SF_{x} \xrightarrow{c} SF_{x-1} + F, x < 5_{\circ}$$
 (2)

在电气设备内,如产生放电,纯净的 SF_6 气体会 产生分解,但放电结束后会迅速复合。如 SF_6 气体中 有微水、微氧、金属等杂质存在时,反应生成的 F 和 多种低氟化物在重新结合的过程中会与杂质发生反 应, SF_6 的分解复合平衡将被破坏,其过程如(3)~ (8)式所示。

 $4SF_5 + O_2 \rightarrow 2S_2OF_{10}, \qquad (3)$

$$SOF_4 + H_2O \rightarrow SO_2F_2 + 2HF_3$$
 (4)

$$SF_4 + O_2 \rightarrow SOF_4, \tag{5}$$

$$SF_4 + OH \rightarrow SOF_2 + HF + F,$$
 (6)

$$SF_3 + O_2 \rightarrow SOF_2 + F,$$
 (7)

$$SF_2 + O_2 \rightarrow SO_2F_{2^\circ} \tag{8}$$

热分解时, SF_6 的解离方式和电子碰撞分解不同, 如式(6)~(9)所示, 其中式(9)为

$SF_6 \xrightarrow{c} SF_4 + 2F \longrightarrow SF_2 + 2F_0$ (9) 2.2 傅里叶红外光谱仪工作原理

傅里叶变换红外光谱仪(fourier transform infrared spectrometer, FTIR)的工作原理与色散型红外光谱 仪不同,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,光源发出红外辐射,经 干涉仪转变成干涉光,通过试样后得到含试样信息的干涉图,由电子计算机采集,并经过快速傅里叶 变换,得到吸收强度或透光度随频率或波数变化的 红外光谱图。

红外光谱是由于分子振动能级跃迁(同时伴随 转动能级跃迁)而产生的。并非所有的振动都会产 生红外吸收,只有发生偶极矩变化的振动才能引起 可观测的红外吸收谱带,称这种振动为红外活性的。

在双原子分子振动体系中,波数可通过式(10) 求得,即

$$\sigma = \frac{1}{2\pi c_0} \sqrt{\frac{k}{H}}, \qquad (10)$$

式中: σ 为波数;c为光速;k为振动力常数;u为折 合质量。

多原子分子的红外吸收式为

 $\sigma_{v-r} = \sigma_v + B[J'(J'+1) - J(J+1)],$ (11) 式中: σ_{v-r} 为振动转动波数; σ_v 为振动波数; B为转 动常数; J为转动量子数; J'为偶极矩发生变化后的 转动量子数。基团振动时,若偶极矩变化垂直于基 团对称轴,则 $\Delta J= 0$, 1;若偶极矩变化平行于基团对 称轴,则 $\Delta J=J' - J=1$ 。由于 ΔJ 的取值不一,故同一 吸收波数附近会出现几条吸收线,得到的光谱图不 是一条吸收线,而是一个吸收谱带。

利用朗伯 - 比尔定律可实现气体组分红外光谱 检测的定量计算,其式为

$$A = \lg(1/T) = ab\phi_{\rm B}, \qquad (12)$$

式中:A为吸光度;T为透射比;a为吸收系数; ϕ_{B} 为吸光物质浓度;b为吸收层厚度。

3 试验条件与结果分析

3.1 试验设备

模拟SF₆放电的装置是一个容积为0.20 m³的试验 室模拟器,试验在其内部进行,模拟器上有一个观 察窗。试验接线如图1所示。

在进行试验之前,要对放电装置内的水分进行 测量,以保证试验条件满足GIS运行标准。先通入_{N2}, 再用泰普SF₆电气设备绝缘气体综合检测仪测定放电 装置内的水分;经检测,气室中氧气体积分数<0.1%、 水分体积分数5×10⁻⁴,符合行业标准 DL/T 596—1996 《电力设备预防性实验规程》¹⁹¹要求;再通入 SF₆气体, 重复以上步骤以保证试验条件满足试验要求。

图1 SF。模拟放电平台试验接线图

Fig. 1 Test wiring diagram of SF₆ simulation discharge platform

试验采用针 – 板电极缺陷模型模拟 GIS 内金属突起物所引起间隙火花放电, 针-板电极间距为6.2 mm,将试验装置抽真空后充入气压为 0.4 MPa 的 SF₆气体,施加电压为 40 kV,水分体积分数为 1.428 × 10⁻⁴,放电时间为 96 h,采气间隔为 12 h。

3.2 红外检测

采用德国 WIKE 公司生产的 TENSOR27 傅里叶变 换红外光谱仪对气体进行红外检测,其气体池为不 锈钢,长度为10 cm,容积25 mL。由于 H₂O和 CO₂对 红外吸收光谱影响较大,测量中不可避免受其影响。 因此,试验前,需对气体池进行抽真空,连续通入 氮气吹扫 2~4 h,再进行背景测试,确保 H₂O和 CO₂ 足够少,再通入待测气体,连续3次,压力控制在1 Pa 左右,波数的分辨率为 0.5 cm⁻¹,扫描次数为 100 次,检测范围在 600~4 000 cm⁻¹。

由于 SF₆气体体积分数高,吸收光谱范围广,与 其分解组分属性相近,有交叉干扰的现象。为了能 检测到微量的分解气体组分,避免选择在 SF₆吸收的 谱带进行分析。SF₆及其分解组分的吸收峰主要分布 在 500~1 800 cm⁻¹,具体情况如表 1 所示。

表1 SF₆及其分解组分的主要吸收波数

Table 1 Main characteristic peaks of SF_6 and its decompositions

气体	吸收波数 /cm ⁻¹	气体	吸收波数 /cm ⁻¹
SO_2	1 386~1 388	CF ₄	1 281, 1 283, 1 285
SO_2F_2	895, 1 269	C ₂ F ₆	1 116, 1 240~1 250
SOF_2	746, 808, 1 330	C ₃ F ₈	1 006, 1 153, 1 261
S_2F_{10}	1 240, 820~830	SF ₄	872

3.3 结果分析

用红外吸收光谱法对 SF₆气体放电前后进行分 析,利用 OMNIC 软件进行差谱处理,以突出放电前 后的差别,如图 2 所示。从图中可以看出,两次获取 的光谱吸收图出峰位置基本一致,但差谱分析后, SF₆放电后的红外吸收光谱图的吸收峰明显增多,说 明放电后组分增加。

虽然 SF₆分解气体在各吸收峰处的吸收系数未知,不能利用朗伯一比尔定律进行精确地定量计算, 但是红外吸光度与物质的浓度具有较好的线性关系, 且气体的吸收系数只与压强、温度有关^[14],因此,只 要保持上述试验条件一致,式(12)中的吸收系数*a* 就是一个恒定量,故分析分解气体的体积分数变化 的趋势是可行的。

由于 SF₆浓度大,吸收范围广。本文采用 Orgin 软件作图,截取 SF₆分解气体的特征吸收波段, 进行光谱图分析。选择纯 SF₆放电后 12,24,36,48, 96 h 6 个时间区间,进行特征气体的吸光度变 化趋势分析,每种特征气体可能会出现 $1\sim3$ 个 特征吸收峰(见图 3)。

图 $a-c = SOF_2$ 的特征吸收峰,其吸收规律一致, 图 d 是 CF_4 的特征吸收峰。由图 3 可以看出, SF_6 放 电前后的分解组分中 SOF_2 的特征吸收峰的主要光谱 区段为: 730~780, 801~815, 1 325~1 335 cm⁻¹,其特征吸 收峰是746, 808, 1 330 cm⁻¹,其吸光度随着放电时间的 增加而增大,在放电 36 h前吸光度都较弱,放电 24 h 后出现吸收峰; CF_4 的特征吸收峰的主要光谱区段为 1 280~1 290 cm⁻¹,其特征吸收峰为1 281,1 283,1 285 cm⁻¹, 在放电前 1 283 cm⁻¹已经有较弱的吸收,说明纯 SF_6 气 体中已含有 CF_4 ,1 281,1 285 cm⁻¹是1 283 cm⁻¹的从峰, 1 283 cm⁻¹是3个波数中吸收最强的,该峰不断增强, 说明 CF_4 在不断地生成。虽然国内生产的工业级 SF_6 气体中或多或少含有部分 CF_4 ,但有研究报道 CF_4 含 量的增加可能是由于固体绝缘材料导致。

将 SF₆放电后 12, 24, 48, 96 h 与纯 SF₆气体进行差 谱处理后的红外吸收光谱对比,如图 4 所示。本文主 要分析的光谱区段为:810~1200,1230~1280, 1350~1400 cm⁻¹。由于SO₂F₂, SO₂, SF₄, C₃H₈, C₂H₆气体 的吸收峰位于 SF₆的强吸收带,不容易进行分析,本 文采取差谱法对特征气体的特征吸收峰进行分析。

由图4可知: SO,F,的特征吸收峰在图a中为895 cm⁻¹,图b为1269 cm⁻¹,但在1269 cm⁻¹的吸收强于 895 cm⁻¹; 图 d 中, SF, 的特征吸收峰为 872 cm⁻¹, 在放 电 12 h 时已经有较弱的吸收,局部放电中 SF₄ 被认为 还会与F,反应生成SF,而发生火花放电后这种平衡 被打破, SF_4 不会再与 F_2 反应生成 SF_6 ,所以随着时 间的延长, SF₄体积分数是逐渐增大的, 放电24~48 h, 吸收度变化幅度较大;根据式(5)以及图 a~c 所示, 放电 48~96 h 吸光度也在逐渐增大但增长的幅度相对 减小,这是由于 SF₄发生反应生成 SOF₂。检测在中红 外波段的 SO, 较困难, 最佳的检测波段在紫外。文献 [13]的研究结果表明, 1360~1380 cm⁻¹是SO,特征吸收 段,由于1300~1800 cm⁻¹受水分的影响较大,很难对其 做出准确判断。 $C_{x}F_{a}$ 的吸收峰分别在图 a 的 116 cm⁻¹、 图 b 的 1 240~1 250 cm⁻¹; C₂F₆ 的吸收峰分别在图 a 的 1 006, 1 153 cm⁻¹, 图b的1 261 cm⁻¹。

文献[13]研究发现 S_2OF_{10} 在958,914~924,806 cm⁻¹ 有吸收, S_2F_{10} 在810~835,1240~1260 cm⁻¹有吸收。在本 试验中, S_2OF_{10} 在图 3b中805 cm⁻¹有比较弱的吸收,图 4a中910 cm⁻¹有较强的吸收,958 cm⁻¹不能确定是否有 吸收,无法判断是否有 S_2OF_{10} ;而图 4b中1240 cm⁻¹有 较强的吸收,图 d中820~830 cm⁻¹有较弱吸收,判断 可能存在 S_3F_{10} 。

4 结论

1)根据SF。分解机理和模拟试验的初步研究,发

现 SO₂F₂, SOF₂, SO₂产生的规律性较强,可以作为判断是否产生火花放电的依据之一,如能检测到,可确定设备产生放电至少大于 24 h。试验中检测出的 SF₁₀, S₂OF₁₀ 特征气体还需进一步分析以确定其存在性以及规律性。

2)有研究发现碳氟化物的增加是由固体绝缘材 料导致。由于本试验未引入固体绝缘材料,却发现 CF₄, C₂F₆, C₃F₈的吸光度在不断地增大,即需要对其产 生的机理与原因作进一步地研究。

3)根据吸光度与浓度成一定的线性关系,不难 从图中发现,放电时间越长,分解组分的吸光度也 会越大,但是相对于增加的幅值并不是随着时间的 增加而增大。SF₆的分解是一个复杂的过程,特征组 分之间存在一定的转换关系,应更深入研究组分之 间的转换来确定特征气体的生成规律。

参考文献:

- [1] 孟玉禅,朱芳菲. 电气设备用六氟化硫的检测与监督
 [M]. 北京:中国电力出版社, 2009: 1-2.
 Deng Yuchan, Zhu Fangfei. Inspection and Supervision of SF₆ for Electrical Equipment[M]. Beijing: China Electric Power Press, 2009: 1-2.
- [2] Chu F Y. SF₆ Decomposition in Gas-Insulated Equipment
 [J]. IEEE Transactions on Electrical Insulation, 1986, 21
 (5): 693-725.
- Baumgartner R, Fruth B, Lanz W, et al. Partial Discharge.
 X. PD in Gas-Insulated Substations-Measurement and Practical Considerations[J]. IEEE Electrical Insulation Magazine, 1992, 8(1): 16-27.
- [4] 肖 燕,郁惟镛. GIS中局部放电在线监测研究的现状 与展望[J]. 高电压技术,2005,31(1):47-50.
 Xiao Yan, Yu Weiyong. Present Status and Prospect of Research of on Line Partial Discharge Monitoring System in GIS[J]. High Voltage Engineering,2005,31(1):47-50.
- [5] Pearson J S, Farish O, Hampton B F, et al. Partial Discharge Diagnostics for Gas Insulated Substations[J].
 IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(5): 893-905.
- [6] 印 华,邱毓昌. GIS中局部放电测量用超高频方法的研究[J]. 高电压技术, 2004, 30(10): 19-20.
 Yin Hua, Qiu Yuchang. Study on UHF Method for GIS Partial Discharge Detection[J]. High Voltage Engineering, 2004, 30(10): 19-20.
- [7] Lundgaard L E, Tangen G, Skyberg B, et al. Acoustic

Diagnoses of GIS: Field Experience and Development of Expert System[J]. IEEE Trans. on Power Delivery, 1992, 7(1): 287–294.

- [8] Tominaga S, Kuwahara H, Hirooka K, et al. SF₆ Gas Analysis Technique and Its Application for Evaluation of Internal Conditions in SF₆ Gas Equipment[J]. IEEE Trans. on Power Apparatus and Systems, 1981, 100(9): 4196– 4206.
- [9] 中华人民共和国电力工业部. DL/T 596—1996电力设备 预防性实验规程[S]. 北京:中国电力出版社, 1996: 57.
 Ministry of Power Industry of China. DL/T 596—1996
 Preventive Test Code for Electric Power Equipment[S].
 Beijing: China Electric Power Press, 1996: 57.
- [10] 张晓星,姚 尧,唐 炬,等.SF₆放电分解气体组分分析的现状和发展[J].高电压技术,2008,34(4):664-669.
 Zhang Xiaoxing, YaoYao, Tang Ju, et al. The Actuality and Prospect of Proximate Analysis of SF₆ Decomposed Products Under Partial Discharge[J]. High Voltage Engineering, 2008, 34(4): 664-669.
- [11] 翁诗甫. 傅里叶变换红外光谱仪[M]. 北京: 化学工业出版社, 2004: 94-99.
 Weng Sifu. Fourier Transformation Infrared Spectrometer

 [M]. Beijing: Chemical Industry Press, 2004: 94-99.
 [12] 张晓星,任江波,唐 炬,等. SF₆分解产物的红外光谱 特性和放电趋势[J]. 高电压技术, 2008, 34(12): 2970-

2976-

Zhang Xiaoxing, Ren Jiangbo, Tang Ju, et al. Infrared Spectrum Characteristic and Discharge Trend of SF_6 Decomposition Products[J]. High Voltage Engineering, 2008, 34(12): 2970–2976.

[13] 姚 强,常 涛,刘 永,等.GC-FTIR技术在六氟化
 硫气体分解产物分析中的应用[J].重庆大学学报,2009,
 32(7):798-803.

Yao Qiang, Chang Tao, Liu Yong, et al. Application of GC-FTIR Technology in the Analysis of SF_6 Decomposition Products[J]. Journal of Chongqing University, 2009, 32 (7): 798–803.

 [14] 陈伟根,云玉新,潘 翀,等.变压器油中溶解气体的 红外吸收特性理论分析[J].中国电机工程学报,2008, 28(16):150-155.

Chen Weigen, Yun Yuxin, Pan Chong, et al. Analysis of Infrared Absorption Properties of Dissolved Gases in Transformer Oil[J]. Proceedings of the CSEE, 2008, 28 (16): 150–155.

(责任编辑:邓 彬)