一类具多重极限环的二次 Hamilton 系统的近似系统

赵育林1,2,陈海波2

(1. 湖南工业大学 理学院, 湖南 株洲 412007; 2. 中南大学 数学学院, 湖南 长沙 410075)

摘 要:利用 Mel'nikov 函数,对一类具有以抛物线与直线为边界的周期环域的单中心二次 Hamilton 系统的三次扰动,分别构造出恰好存在两个单重极限环、恰好存在一个二重极限环、恰好存在一个极限环和一个分界线环的近似系统。

关键词: 三次扰动; Hamilton 系统; 极限环; 近似系统

中图分类号: O175

文献标识码: A

文章编号: 1673-9833(2008)02-0025-04

Approximate System for Quadratic Hamiltonian System with Multiple Limits

Zhao Yulin^{1,2}, Chen Haibo²

(1. Department of Mathematics, Central South University, Changsha 410075, China;

2. Department of Mathematics & Science, Hunan University of Technology, Zhuzhou Hunan 412007, China)

Abstract By using Mel'nikov functions, for the Poincare bifurcation problems of quadratic Hamiltonian system under cubic perturbation with one center and the periodic regions, which has a parabola and an invariant straight line as it's bounding. the approximate system to show that there exist just two single limit cycles, or just one double-limit cycle, or just one single-limit cycle and one separatric cycle are given.

Key words: cubic perturbation; Hamiltonian system; limit cycle; approximate system

0 引言

确定 Hamilton 系统在扰动下的极限环个数是个比较困难的问题,这一问题与弱化 Hibert 第十六问题及平面系统中高余维分岔研究有密切的联系。国内外在此方面有不少工作[1-6],文献[1]研究了一类具单中心二次 Hamilton 系统在二次扰动下的分岔;文献[3]讨论了一类扰动双中心 Hamilton 系统的分岔,得到存在唯一极限环的充分条件;最近,文献[4]讨论了具有抛物线与直线为边界的周期环域的单中心二次系统的Poincare 分岔。另外,在给出系统的极限环个数的基础上,如何构造出相应的实例也是很有意义的工作[5,6]。受文献[4,6]的启发,我们讨论如下系统:

$$\begin{cases} \dot{x} = -2 + y + x^2 + \varepsilon P_3(x, y), \\ \dot{y} = -2xy + \varepsilon Q_3(x, y), \end{cases}$$
 (1)

其中:
$$P_3(x,y) = \sum_{i \neq j < 3} a_{ij} x^i y^j$$
,

$$Q_3(x, y) = \sum_{i=j < 3} b_{ij} x^i y^j$$

分别构造出该系统恰好存在两个单重极限环、恰好存在一个二重极限环、恰好存在一个极限环和一个分界 线环的近似系统。

1 预备知识

当 ϵ =0 时,系统(1)是 Hamilton 系统,其 Hamilton 函数为。

$$H(x,y) = \frac{1}{2}y(2x^2 + y - 4) = h_0$$
 (2)

当 h = 0 时,式(2)表示抛物线 $2x^2 + y - 4 = 0$ 和直线

y = 0; 当 h = -2 时它表示孤立的点 $O_1(0, 2)$; 当 -2 < h < 0 时,它表示分别绕 $O_1(0, 2)$ 的一族闭曲线,设 Γ_h 为 H(x, y) = h 当 -2 < h < 0 时的闭轨。

引理 1 系统(1)的 Abel 积分 I(h)为: $I(h) = 8\sqrt{2+h} \left\{ \left[\phi_1(h) - \left(1 - \sqrt{1 + \frac{h}{2}}\right) \phi_0(h) \right] \alpha_1 + \frac{h}{2} \left[\phi_1(h) - \left(1 - \sqrt{1 + \frac{h}{2}}\right) \phi_0(h) \right] \beta_1 + \left[\left(4 + \frac{3}{2}h\right) \phi_1(h) - \left(1 - \sqrt{1 + \frac{h}{2}}\right) \phi_0(h) \right] \delta_1 \right\},$

其中:

$$\phi_{1}(h) = \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \frac{2\sqrt{1 + h/2}}{1 + \sqrt{1 + h/2}}} \sin^{2}\theta \, d\theta,$$

$$\phi_{0}(h) = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - \frac{2\sqrt{1 + h/2}}{1 + \sqrt{1 + h/2}}} \sin^{2}\theta},$$

系数 $\alpha_1, \beta_1, \delta_1$ 在以下的 $\tilde{I}(k)$ 式中给出。

证明 令
$$u = \sqrt{2}z$$
,从而有
$$z_1(h) = \sqrt{1 - \sqrt{1 + h/2}}, z_2(h) = \sqrt{1 + \sqrt{1 + h/2}},$$

(-2< h <0)。 先计算*I*₂"(h):

$$\begin{split} I_{2n}(h) &= \int_{u_1(h)}^{u_2(h)} u^{2n} \sqrt{-u^4 + 4u^2 + 2h} \mathrm{d}u = \\ & 2^{n+3/2} z_1 z_2 \int_{\tau_1(h)}^{z_2(h)} z^{2n} \sqrt{-\left(1 - z^2 / z_1^2\right) \left(1 - z^2 / z_2^2\right)} \mathrm{d}z \, \circ \\ & \stackrel{\text{TP}}{\boxtimes} k_i = 1/z_i (i = 1, 2) \, , \, \stackrel{\text{M}}{\coprod} : \\ I_{2n}(h) &= \left(2^{n-3/2} / k_1 k_2\right) \int_{1/k_1}^{1/k_2} z^{2n} \sqrt{-\left(1 - k_1^2 z^2\right) \left(1 - k_2^2 z^2\right)} \mathrm{d}z \, , \end{split}$$

又说
$$k_2 z = \sqrt{1 - k^2 t^2}$$
,且 $k^2 = \left(k_1^2 - k_2^2\right) / k_1^2$,则
$$I_{2n}(h) = \frac{2^{n+3/2} \left(k_1^2 - k_2^2\right)^2}{k_1^4 k_2^{2n-3}} \int_0^1 \frac{\left(1 - k^2 t^2\right)^n t^2 \sqrt{1 - t^2} \, dt}{\sqrt{1 - k^2 t^2}} = \frac{k^4}{k_2^3} \left[-\frac{1}{k^4} \int_0^1 \frac{\left(1 - k^2 t^2\right)^{n-2} \, dt}{\sqrt{\left(1 - t^2\right) \left(1 - k^2 t^2\right)^2}} + \frac{2 - k^2}{k^4} \int_0^1 \frac{\left(1 - k^2 t^2\right)^{n+1} \, dt}{\sqrt{\left(1 - t^2\right) \left(1 - k^2 t^2\right)^2}} - \frac{1 - k^2}{k^4} \int_0^1 \frac{\left(1 - k^2 t^2\right)^n \, dt}{\sqrt{\left(1 - t^2\right) \left(1 - k^2 t^2\right)^2}} \right] - \frac{1 - k^2}{k^4} \int_0^1 \frac{\left(1 - k^2 t^2\right)^n \, dt}{\sqrt{\left(1 - t^2\right) \left(1 - k^2 t^2\right)^2}} \right] - \frac{1 - k^2}{k^4} \int_0^1 \frac{\left(1 - k^2 t^2\right)^n \, dt}{\sqrt{\left(1 - t^2\right) \left(1 - k^2 t^2\right)^2}} \right] - \frac{1 - k^2}{k^4} \int_0^1 \frac{\left(1 - k^2 t^2\right)^n \, dt}{\sqrt{\left(1 - t^2\right) \left(1 - k^2 t^2\right)^2}} \right] - \frac{1 - k^2}{k^4} \int_0^1 \frac{\left(1 - k^2 t^2\right)^n \, dt}{\sqrt{\left(1 - t^2\right) \left(1 - k^2 t^2\right)^2}} \right] - \frac{1 - k^2}{k^4} \int_0^1 \frac{\left(1 - k^2 t^2\right)^n \, dt}{\sqrt{\left(1 - t^2\right) \left(1 - k^2 t^2\right)^2}} \right] - \frac{1 - k^2}{k^4} \int_0^1 \frac{\left(1 - k^2 t^2\right)^n \, dt}{\sqrt{\left(1 - t^2\right) \left(1 - k^2 t^2\right)^2}} \right] - \frac{1 - k^2}{k^4} \int_0^1 \frac{\left(1 - k^2 t^2\right)^n \, dt}{\sqrt{\left(1 - t^2\right) \left(1 - k^2 t^2\right)^n}} dt$$

$$2^{n+3/2}k_2^{-(2n-3)}\left[-\phi_{n-2}(k)+\left(2-k^2\right)\phi_{n+1}(k)-\left(1-k^2\right)\phi_n(k)\right]\circ 这里$$

$$\phi_n(k)=\int_0^1\left[\left(1-k^2t^2\right)^n\left/\sqrt{\left(1-t^2\right)\left(1-k^2t^2\right)}\right]dt\cdot(n=0,1,2,3)\circ$$
取 $n=0,1$ 可求得:

$$\begin{split} I_{\theta}(h) &= \tilde{I}_{0}(k) = 8\sqrt{2}k_{2}^{-3} \left[\left(2-k^{2}\right)\!\phi_{1}(k) - \phi_{2}(k) - \left(1-k^{2}\right)\!\phi_{\theta}(k) \right], \\ I_{2}(h) &= \tilde{I}_{2}(k) = 32\sqrt{2}k_{2}^{-3} \left[\left(2-k^{2}\right)\!\phi_{2}(k) - \left(1-k^{2}\right)\!\phi_{1}(k) - \phi_{3}(k) \right] \otimes \\ & \text{以下给出一个导数公式:} \end{split}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[t \left(1 - k^2 t^2 \right)^{m-1} \sqrt{(1-t^2)(1-k^2 t^2)} \right] = \\
\left[k^2 \sqrt{(1-t^2)(1-k^2 t^2)} \right]^{-1} \left[(2m-1)(1-k^2 t^2)^{m+1} - \\
2m(2-k^2)(1-k^2 t^2)^{m} + (2m-1)(1-k^2)(1-k^2 t^2)^{m-1} \right]^{-1} + \\$$
将式(3)两端从0到1积分,即可得

 $(2m+1)\phi_{m+1}(k) - 2m(2-k^2)\phi_m(k) + (2m-1)(1-k^2)\phi_{m-1}(k) = 0$,在上式中分别取 m=1,2有

$$\begin{split} \phi_2(k) &= \frac{1}{3} \Big[2 \Big(2 - k^2 \Big) \phi_1(k) - \Big(1 - k^2 \Big) \phi_0(k) \Big], \\ \phi_3(k) &= \frac{1}{15} \Big[8 \Big(2 - k^2 \Big)^2 - 9 \Big(1 - k^2 \Big) \Big] \phi_1(k) - \frac{4}{15} \Big(1 - k^2 \Big) \Big(2 - k^2 \Big) \phi_0(k), \end{split}$$

从而得到

$$\begin{split} \tilde{I}_{0}(k) &= \frac{8\sqrt{2}}{3k_{2}^{2}} \Big[\Big(2 - k^{2} \Big) \phi_{1}(k) - 2 \Big(1 - k^{2} \Big) \phi_{0}(k) \Big], \\ \tilde{I}_{2}(k) &= \frac{32\sqrt{2}}{15k_{2}^{2}} \Big\{ \Big[2 \Big(2 - k^{2} \Big)^{2} - 6 \Big(1 - k^{2} \Big) \Big] \phi_{1}(k) - \Big(2 - k^{2} \Big) \Big(1 - k^{2} \Big) \phi_{0}(k) \Big\}_{0}. \end{split}$$

因
$$k^2 = (k_1^2 - k_2^2)/k_1^2$$
,有 $k_2^2 = (2 - k^2)/2$,则

$$\widetilde{I}_{2}(k) = \frac{64\sqrt{2}}{15k_{2}^{3}} \left\{ \left[2(2-k^{2}) - \frac{6(1-k^{2})}{2-k^{2}} \right] \phi_{1}(k) - (1-k^{2}) \phi_{0}(k) \right\},\,$$

(0 < k < 1), 其中

$$\phi_1(k) = \int_0^1 \frac{(1 - k^2 t^2) dt}{\sqrt{(1 - t^2)(1 - k^2 t^2)}} = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2 \theta} d\theta,$$

$$\phi_0(k) = \int_0^1 \frac{dt}{\sqrt{(1 - t^2)(1 - k^2 t^2)}} = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}},$$

 $\phi_0(k)$, $\phi_0(k)$ 为第一、二类椭圆积分,相互独立,不能互

化。由
$$h = \frac{-8(1-k^2)}{(2-k^2)^2}$$
,可得 $I(h) = 8\sqrt{2}k_2^{-3}\tilde{I}(k)$ 。

这里 $\tilde{I}(k) = \dot{\bar{f}}_1(k)\alpha_1 + \bar{f}_2(k)\beta_1 + \bar{f}_3(k)\delta_1$, 其中: $\alpha_1 = \alpha/3$, $\beta_1 = 8\beta/3$, $\delta_1 = 8\delta/15$, 且 α , β , δ 由文[4]的式(2)给出。同时

$$\begin{split} &\overline{f}_1(k) = \left(2 - k^2\right) \phi_1(k) - 2\left(1 - k^2\right) \phi_0(k) \,, \\ &\overline{f}_2(k) = -\frac{1 - k^2}{2 - k^2} \phi_1(k) + \frac{2\left(1 - k^2\right)^2}{\left(2 - k^2\right)^2} \phi_0(k) \,, \\ &\overline{f}_2(k) = -\frac{1 - k^2}{2 - k^2} \phi_1(k) + \frac{2\left(1 - k^2\right)^2}{\left(2 - k^2\right)^2} \phi_0(k) \,, \end{split}$$

注意到 $k^2 = 2\sqrt{1+h/2}/(1+\sqrt{1+h/2})$,便可得引理1的结论。证毕。

2 近似系统的构造

令
$$R = \sqrt{1 + h/2}$$
, 显然 $0 < R < 1$, 则
$$I(h) = 8\sqrt{2(1+R)} [f_1(R)\alpha' + f_2(R)\beta' + f_3(R)\delta'] =$$

8
$$\sqrt{2(1+R)}\tilde{I}(R)$$
 。 其中
$$f_1(R) = \phi_1(R) - (1-R)\phi_0(R),$$

$$f_3(R) = (1+3R^2)\phi_1(R) - (1-R)\phi_0(R),$$

$$f_2(R) = -(1-R^2)\phi_1(R) + (R^3 - R^2 - R - 1)\phi_0(R), \quad \text{且}$$

$$\alpha' = \frac{4\sqrt{2}}{3}(a_{10} + b_{01} + 6a_{30} + \frac{2}{3}b_{21}),$$

$$\beta' = \frac{16\sqrt{2}}{21}(a_{12} + 3b_{03}).$$

$$\delta' = \frac{16\sqrt{2}}{15}(a_{11} + 2b_{02}) + \frac{256\sqrt{2}}{105}(a_{12} + 3b_{03}) + \frac{32\sqrt{2}}{45}(3a_{30} + b_{01}).$$

显然 $f_1(R)$, $f_2(R)$, $f_3(R)$ 是定义在(0, 1)内连续可微且线性无关的函数,系统(1)对应的 Abel 积分 I(h)即 $\tilde{I}(R)$ 是这 3 个函数 $f_1(R)$, $f_2(R)$, $f_3(R)$ 关于 3 个独立参数 α' , β' , δ' 的线性组合。任取 R_1 , R_2 满足:

因方程组(4)关于未知数 α' , β' 的系数行列式 $\begin{vmatrix} f_1(R_1) & f_2(R_1) \\ f_1(R_2) & f_3(R_2) \end{vmatrix} \neq 0,$

所以当 $\beta' \neq 0$ 时可以从方程组(4)中解出 α' , β' , 得

$$\begin{cases} \alpha' = \frac{f_3(R_1)f_2(R_2) - f_3(R_2)f_2(R_1)}{f_1(R_1)f_3(R_2) - f_1(R_2)f_3(R_1)} \beta' = \alpha(R_1, R_2)\beta', \\ \delta' = \frac{f_1(R_2)f_2(R_1) - f_1(R_1)f_2(R_2)}{f_1(R_1)f_3(R_2) - f_1(R_2)f_3(R_1)} \beta' = \delta(R_1, R_2)\beta', \end{cases}$$
(5.)

此条件等价于: (其中 $a_{12}+3b_{03} \neq 0$)

$$\begin{cases}
a_{10} = \frac{4}{7}\alpha(R_1, R_2)(a_{12} + 3b_{03}) - (b_{03} + 6a_{30} + \frac{2}{3}b_{21}), \\
b_{01} = \frac{15}{14}\left[\delta(R_1, R_2) - \frac{16}{5}\right](a_{12} + 3b_{03}) - 3a_{30} - \frac{3}{2}(a_{11} + 2b_{02}).
\end{cases} (6)$$

满足式(6)的系统(1)形如(其中 $a_{12}+3b_{03}\neq 0$):

$$\begin{cases} \dot{x} = -2 + y + x^2 + \varepsilon \left\{ \left[\frac{4}{7} \alpha \left(R_1, R_2 \right) \left(a_{12} + 3b_{03} \right) - \left(b_{03} + 6a_{30} + \frac{2}{3} b_{21} \right) \right] x + \overline{P}_3(x, y) \right\}, \\ \dot{y} = -2xy + \varepsilon \left\{ \left[\frac{15}{14} \left(\delta(R_1, R_2) - \frac{16}{5} \right) \left(a_{12} + 3b_{03} \right) - 3a_{30} - \frac{3}{2} \left(a_{11} + 2b_{02} \right) \right] y + \overline{Q}_3(x, y) \right\}, \end{cases}$$

这里:
$$\overline{P}_3(x,y) = \sum_{\substack{i+j \leq 3, n_{10} = 0}} a_{ij} x^i y^j,$$

$$\overline{Q}_3(x,y) = \sum_{\substack{i+j \leq 3, k_{10} = 0 \\ j \neq 1, k_{2j} \leq k_{2j} = 0}} b_{ij} x^i y^j,$$

而 $\alpha(R_1, R_2)$, $\beta(R_1, R_2)$ 由式 (5)给出。

定理 1 对于任意给定的 R_1 , R_2 满足 $0 < R_1 < R_2 < 1$,

当 $0</\varepsilon/«1$ 时,近似系统(7)在上半平面恰好存在两个单重极限环也即系统(1)可以存在两个极限环。这两个环分别位于两条闭曲线:

$$\Gamma_i: \frac{1}{2}y(2x^2+y-4)=2(R_i^2-1), \quad (i=1, 2)$$

的小邻域内。

知: $\underline{30} < /\varepsilon/\ll 1$,定理1的结论成立。

证明 由文[4]知I(h) = 0在-2 < h < 0上至多有两个零点,即 $\tilde{I}(R) = 0$ 在0 < R < 1上至多有两个零点;又注意到条件(6)成立时,函数 $\tilde{I}(R)$ 在0 < R < 1内恰好存在两个单重根 $R = R_i$,(i = 1, 2)。即函数I(h)在-2 < h < 0内恰好存在两个单重根 $h = 2\left(R_i^2 - 1\right)$,(i = 1, 2)。由文献[6]

定理 $_1$ 即为系统($_1$)存在 $_{(0,2)}$ 分布的一个构造性定理,由于 $_{R_1}$, $_{R_2}$ 在 $_0$ < $_2$ < $_3$ 内的任意性,也即 $_{h_1}$, $_{h_2}$ 在 $_3$ < $_4$ < $_5$ 内的任意性,故这两个极限环可以任意地落在闭曲线族 $_{L_4}$ 的任意两条闭曲线的小邻域内。

定理 2 对任给的 R_0 : $0 < R_0 < 1$,考虑关于 α' , β' , δ' 的方程组 $\tilde{I}(R_0) = \tilde{I}'(R_0) = 0$,即

$$\begin{cases} f_1(R_0)\alpha' + f_2(R_0)\beta' + f_3(R_0)\delta' = 0, \\ f_1'(R_0)\alpha' + f_2'(R_0)\beta' + f_3'(R_0)\delta' = 0, \end{cases}$$

的非零解为 $\alpha' = \alpha_0$, $\beta' = \beta_0$, $\delta' = \delta_0$ 。 如果系统 (1) 的参数满足以下条件:

$$\begin{cases}
\alpha_{0} = \frac{4\sqrt{2}}{3} \left(a_{10} + b_{01} + 6a_{30} + \frac{2}{3}b_{21} \right), \\
\beta_{0} = \frac{16\sqrt{2}}{21} \left(a_{12} + 3b_{03} \right), \\
\delta_{0} = \frac{16\sqrt{2}}{15} \left(a_{11} + 2b_{02} \right) + \frac{256\sqrt{2}}{105} \left(a_{12} + 3b_{03} \right) + \frac{32\sqrt{2}}{45} \left(3a_{30} + b_{01} \right).
\end{cases}$$
(8)

则当 $0</\varepsilon/《1$ 时,系统(1)具有一个二重极限环,此二重环将位于闭曲线 Γ_0 :

$$\frac{1}{2}y(2x^2+y-4)=2(R_0^2-1)$$
的小邻域内。

证明 由方程组(g)可解得。

$$\begin{cases} \alpha_{0} = \frac{f_{5}(R_{0})f_{2}'(R_{0}) - f_{5}'(R_{0})f_{2}(R_{0})}{f_{1}(R_{0})f_{3}'(R_{0}) - f_{1}'(R_{0})f_{3}(R_{0})} \beta_{0} = \alpha(R_{0})\beta_{0} * \\ \delta_{0} = \frac{f_{2}(R_{0})f_{1}'(R_{0}) - f_{2}'(R_{0})f_{1}(R_{0})}{f_{1}(R_{0})f_{3}'(R_{0}) - f_{1}'(R_{0})f_{3}(R_{0})} \beta_{0} = \delta(R_{0})\beta_{0}, \end{cases}$$
(9)

条件(9)等价于

$$\begin{cases} a_{10} = \frac{4}{7}\alpha(R_0)(a_{12} + 3b_{03}) - (b_{03} + 6a_{50} + \frac{2}{3}b_{21}), \\ b_{01} = \frac{15}{14} \delta(R_0) - \frac{16}{5} (a_{12} + 3b_{03}) - 3a_{30} - \frac{3}{2}(a_{11} + 2b_{02}), \end{cases}$$

对应的系统(1)为(其中 a_{12} +3 $b_{03} \neq 0$):

$$\begin{cases} \dot{x} = -2 + y + x^2 + \varepsilon \left\{ \left[\frac{4}{7} \alpha \left(R_0 \right) \left(a_{12} + 3b_{03} \right) - \left(b_{03} + 6a_{30} + \frac{2}{3} b_{21} \right) \right] x + \overline{P}_3(x, y) \right\}, \\ \dot{y} = -2xy + \varepsilon \left\{ \left[\frac{15}{14} \left[\delta(R_0) - \frac{16}{5} \right] \left(a_{12} + 3b_{03} \right) - 3a_{30} - \frac{3}{2} \left(a_{11} + 2b_{02} \right) \right] y + \overline{Q}_3(x, y) \right\}, \end{cases}$$

因已知函数 $\tilde{I}(R)$ 在0 < R < 1内至多存在两个零点,所以此系统所对应的函数:

$$\begin{split} \tilde{I}_{1}(R) &= f_{1}(R)\alpha(R_{0}) + f_{2}(R) + f_{3}(R)\delta(R_{0}) \\ & \pm 0 < R < i$$
 内存在唯一的二重根 $R = R_{0}$,也就是 $\tilde{I}_{1}(R_{0}) = \tilde{I}_{1}^{'}(R_{0}) = 0, \, \tilde{I}_{1}^{''}(R_{0}) \neq 0 \circ \end{split}$

任给 v: 0 < v < 1,则函数

 $\tilde{I}_{1}^{(\nu)}(R) = f_{1}(R)[\alpha(R_{0}) + \nu] + f_{2}(R) + f_{3}(R)\delta(R_{0})$, (10) $\tilde{I}_{1}^{(-\nu)}(R) = f_{1}(R)[\alpha(R_{0}) - \nu] + f_{2}(R) + f_{3}(R)\delta(R_{0})$, (11) 由它们的图形可知:对给定充分小的 ν , 一定存在这样的 ε : $0 < /\varepsilon / \ll 1$,使得对应于函数 (10)的系统 (1)不存在极限环;对应于函数 (11)的系统 (1)恰好存在两个极限环,且它们均位于上半平面的闭曲线 Γ_{0} 的小邻域内。因此对应于 ε ,必会存在相应的 ν_{0} : $-\nu < \nu_{0} < \nu$,使系统:

$$\begin{cases} \dot{x} = -2 + y + x^2 + \varepsilon \left\{ \left[\left(\frac{4}{7} \alpha(R_0) + V_0 \right) \left(a_{12} + 3b_{03} \right) - \left(b_{03} + 6a_{30} + \frac{2}{3} b_{21} \right) \right] x + \overline{P}_3(x, y) \right\}, \\ \dot{y} = -2xy + \varepsilon \left\{ \left[\frac{15}{14} \left(\delta(R_0) + V_0 - \frac{16}{5} \right) \left(a_{12} + 3b_{03} \right) - 3a_{30} - \frac{3}{2} \left(a_{11} + 2b_{02} \right) \right] y + \overline{Q}_3(x, y) \right\}, \end{cases}$$

在上半平面的闭曲线 Γ_0 的小邻域内恰好存在一个二重极限环。证毕。

对式(5)中的函数 $\alpha(R_1, R_2)$ 和 $\delta(R_1, R_2)$,当 R_2 — 1-0 取极限值有:

$$\begin{split} \alpha_1 &= \frac{4f_2(R_1)}{f_3(R_1) - 4f_1(R_1)} \beta_0 = \alpha(R_1)\beta_0, \\ \delta_1 &= -\frac{f_2(R_1)}{f_3(R_1) - 4f_1(R_1)} \beta_0 = -\frac{1}{4}\alpha(R_1)\beta_0. \end{split}$$

则满足上述条件的系统(1)为:

$$\begin{vmatrix}
\dot{x} = -2 + y + x^{2} + \varepsilon \left\{ \left[\frac{4}{7} \alpha \left(R_{1} \right) \left(a_{12} + 3b_{03} \right) - \left(b_{03} + 6a_{30} + \frac{2}{3} b_{21} \right) \right] x + \overline{P}_{3}(x, y) \right\}, \\
\dot{y} = -2xy + \varepsilon \left\{ \left[-\left(\frac{15}{56} \alpha (R_{1}) + \frac{24}{7} \right) \left(a_{12} + 3b_{03} \right) - 3a_{30} - \frac{3}{2} \left(a_{11} + 2b_{02} \right) \right] y + \overline{Q}_{3}(x, y) \right\}.$$
(12)

从而类似定理2的证明,我们可得:

定理 3 对给定的 R_1 : $0 < R_1 < 1$ 和充分小的 ε : $0 < /\varepsilon / «1$,必存在系统(12)这样的一个近似系统,此系统在上半平面的闭曲线 Γ_1 : $\frac{1}{2}y(2x^2+y-4)=2(R_1^2-1)$ 的小邻域内恰好存在一个极限环,而在上半平面的弓形闭曲线 L_1 : $\frac{1}{2}y(2x^2+y-4)=0$ 的小邻域内存在一个分界线环。

参考文献:

- [1] Song Yan. The poincare bifurcation of a class of quadratic systems [J]. Pure and Applied Math., 2004, 20(3): 291–294.
- [2] Zhao Yulin. On the number of zeros of Abelian integrals for a polynomial Hamiltonian irregular at infinity [J]. J. Diff. Equs., 2005, 209: 329-364.
- [3] Cheng Shihua, Feng Jianwen .Bifurcation in perturbed Hamiltonian system with two centers[J]. J.of. Math. 1996,16 (3): 307–311.
- [4] 赵育林. 一类单中心 Hamilton 系统在三次扰动下的 Poincare 分岔[J]. 数学理论与应用, 2006(1): 117-120.
- [5] Tan Xinxin, Feng Enmin, Shen Boqian. Study on the poincare bifurcation of quadratic system with two centers and two unbounded heteroclinic loops once again[J]. Acta. Math. Appl. Sic., 2004, 27(2): 300–309.
- [6] Shen Boqian. An approximate system for a differential system with a multiple limit cycle [J]. Acta. Math. Appl. Sica., 1988, 21(2): 282–287.

(责任编辑:罗立宇)