基于局部邻域信息的 Contourlet 变换域图像去噪

谭 兮,张学毅

(湖南工业大学 电气与信息工程学院,湖南 株洲 412008)

摘 要:分析了 Contourlet 变换系数间的统计特性,提出了一种新的基于 Contourlet 变换的图像去噪算法。 这种算法考虑相邻 Contourlet 系数间的相关性,认为某一位置"干净"的 Contourlet 系数不仅与这一位置本身的 含噪系数有关,也与其周围邻域的含噪系数有关。实验结果表明,所提出的算法不仅能得到较满意的"线形结 构",而且也能获得比现有方法更高的信噪比。

 关键词:小波;Contourlet变换;图像去嗓;非参数估计

 中图分类号: TP751

 文献标识码 A

文章编号: 1673-9833(2007)04-0088-05

Image Denoising Based on Local Information in the Contourlet Variable Domain

Tan Xi, Zhang Xueyi

(School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou Hunan 412008, China)

Abstract: We analyze the statistical property of Contourlet coefficients and propose a new image denoising algorithm. The new algorithm takes into account the dependent property of Contourlet coefficients, and assumes that a noise-free coefficient is not only related to the corresponding noise coefficient but also those in its local neighborhood. Experiments demonstrate the new denoising algorithm can recover the line-type structure well and produce higher PSNR than the existing algorithms.

Key words: wavelet transfom; Contourlet transform; images denoising; non-parameter estimatation

0 引言

Contourlet 变换是一种新的二维函数表示方法, 能有效处理二维函数中的"线奇异",已被成功应用 于图像处理等领域。Contourlet 变换用于图像去噪时, 有比 wavelet 变换更好的"线形结构"保护特性。然 而,现有去噪算法一般假设 Contourlet 系数是相互独 立的,这与 Contourlet 变换是一种冗余变换的事实并 不相符。

变换域图像去噪本质上是一个函数的非线性逼近 问题。对于观察序列

 $y_k = \theta_k + \sigma_n z_k (k=1, \dots, n),$ (1) 现在要估计{ $\theta_k, k=1, \dots, n$ }。式(1)中, { z_k }是独立同分 布的高斯白噪声序列。对于这样的估计问题,存在如 下的"理想风险"^[1]

$$\Re(\theta,\sigma) = \sum \min\left(\theta_i^2, \sigma_n^2\right), \qquad (2)$$

理想风险是任何 $\{\theta_k\}$ 的估计子的均方误差所不能达到的理想下界。式(2)清楚地表明,对于变换域图像去噪,好的非线性逼近性能自然对应着低的理想分险。

寻求客观事物的"稀疏"表示方法一直是计算机 视觉、数学、数据压缩等领域的专家学者的研究目 标。对于含"点奇异"的一维信号,小波能达到"最 优"的非线性逼近阶,而在处理二维或者更高维含 "线奇异"的信号时,虽然由一维小波张成的高维小 波基在逼近性能上要优于三角基,却也不能达到理想 的最优逼近阶。小波变换的不足使人们开始寻求更好 的非线性逼近工具^[2-4], Contourlet 变换就在这样的背 景下应运而生。

由于具有好的非线性逼近性能, Contourlet 变换

收稿日期: 2007-05-15

作者简介:谭 兮(1967-),男,湖南涟源人,湖南工业大学高级工程师,主要研究方向为图形图像处理,智能控制.

已经被成功地应用于图像处理。特别是, Contourlet 变换用于图像去噪时表现出一种优良的"线型结构" 保持特性: 含噪图像中线型边缘能得到较好的恢复 ^[2]。而这一点,正是基于小波变换的图像去噪算法所 不具有的。为方便处理,基于 Contourlet 变换的图像 去噪算法一般假定系数间是相互独立的。与正交小 波变换不同, Contourlet 变换是一种冗余因子为1.3的 冗余变换,因此,其系数独立的假设显然不成立。本 文讨论了自然图像的 Contourlet 系数的统计特性,并 发展了一种新的基于局部领域信息的 Contourlet 变换 图像去噪算法,这种算法在计算"干净"Contourlet 系数时也考虑了其周围系数的影响。实验结果表明, 这种基于领域信息的去噪算法比普通的基于阈值的 去噪算法有更好的视觉效果,并且能获得更高的峰 值信噪比。

1 Contourlet 变换

根据生理学家对人类视觉系统的研究,一种"最优"的图像表示方法应该具有如下特征^[5,6]:

 1)多分辨特征:能够对图像从粗分辨率到细分辨 率进行连续逼近,即"带通"性;

2)局域性:在空域和频域,这种表示方法的"基" 应该是"局部"的;

3)方向性:其"基"应该具有多"方向"性。

由一维小波张成的二维可分离小波基只具有有限 方向,即水平、垂直和对角,多方向性的缺乏是其不 能"最优"表示具有线或者面奇异的高维函数的重要 原因。而具有线或面奇异的函数在高维空间中非常普 遍,例如,自然物体光滑边界使得自然图像的不连续 性往往体现为光滑曲线上的奇异性,而并不仅仅是点 奇异。小波分析的不足,使人们开始从不同角度出发, 试图寻找比小波更好的"稀疏"表示工具。

Contourlet 变换也称塔型方向滤波器组(PDFB, pyramidal directional filter bank), 由 M. N. Do和 Martin Vetterli在 2002 年提出⁽⁷⁾。这是一种"真正"多分辨的、 局域的、方向的图像表示方法。

Contourlet 变换继承了 Curvelet 变换的各向异性尺 度关系,因此,在一定意义上可以认为是 Curvelet 变 换的另一种实现方式。Contourlet 基的支撑区间具有随 着尺度而长宽比变化的"长条形"结构。Contourlet 变 换将多尺度分析和方向分析分拆来进行,首先由 LP (Laplacian pyramid)变换对图像进行多尺度分解,以 "捕获"点奇异,接着,由方向滤波器组(DFB,directional filter bank)将分布在同方向上的奇异点合成为一个系 数^[8-11],如图 1 所示。Contourlet 变换的最终结果是用 类似于线段的基结构来逼近原图像,这也是所以称之 为 Contourlet 变换的原因。

在文献[9]中, M. N. Do用框架理论和过采样滤波器组研究了LP分解,结果表明用正交滤波器组来实现的LP分解算法是一个框架界为1的紧框架。在Contourlet变换中, M. N. Do使用对称于前向分解算子的对偶框架算子来实现最优线性重构^[2]。完全重构的方向滤波器组由Bamberger和Smith在文献[12]中提出。 DFB 对图像进行 *l* 层树状结构分解,在每一层将频域分解成 2^{*l*}个子带,每个子带呈锲型,如图 2 所示。

图 2 方向滤波器组对频域的锲型剖分 Fig. 2 Wedge-type partition of frequency domain of directional filter band

在文献[9]、[11]中, M. N. Do提出了一种新的方向 滤波器组实现方法,这种方法使用扇型结构的共轭镜 像滤波器组,以避免对输入信号的调制,同时,将1层 树状结构的方向滤波器变换成2¹个并行通道的结构。 图像的LP分解连续的对其带通图像进行子带分解,当 对这些带通子带应用方向滤波器组时,便能有效地 "捕获"方向信息。

LP 分解和 DFB 都具有完全重构特性,显然,由其 组合而成的 PDFB 也能实现完全重构,并且 PDFB 与 LP 分解有相同的冗余度: 1.33。Contourlet 变换每一尺度 上的方向数目是前一尺度的 2 倍。图 3 给出了 Boat 图 像的 Contourlet 分解(3 层 LP 分解)。

Contourlet 变换的一个重要特点是其具有类似于 Curvelet 变换的各向异性尺度关系。事实上,在塔型结

图 3 Boat 图像 Contourlet 分解 Fig. 3 Contourlet decomposition of Boat image

构的第*j*层,图像的PDFB分解总的效果相当于基函数 具有如下的支撑区间:

width
$$\approx 2^{j}$$
, length $\sim 2^{j/2}$ (3)

对于二维分片光滑函数类, Contourlet 变换比小波 变换有更好的非线性逼近能力。事实上, 对分片光滑 函数类, 小波变换和傅立叶变换的非线性逼近阶只能 达到 $O(M^1)$ 和 $O(M^{1/2})$, 而Contourlet 变换的M项 非线性逼近误差为^[2]:

$$\boldsymbol{\varepsilon}[M] = \left\| f - f_M^{\text{Contourlet}} \right\|^2 \le CM^{-2} \left(\log M \right)^3 \circ \tag{4}$$

基于 Contour let 变换的图像去噪 算 法

2.1 阈值去噪

经典的阈值去噪算法一般假设系数间是相互独立的:将 Contourlet 系数逐一与预先设定的阈值进行比较,如果系数的幅值大于阈值,则保留;若小于阈值,则置为零。阈值去噪算法是利用信号能量集中于少数 变换系数的特点,该方法也称缩减法(Shrinkage),最 早由 Donoho等人提出^[13],分软阈值和硬阈值法。软 阈值方法为:

$$W_{\delta} = \begin{cases} \operatorname{sgn}(W)(|W| - \delta), & |W| \ge \delta, \\ 0, & |W| \le \delta, \end{cases}$$
(5)

硬阈值方法为:

$$W_{\delta} = \begin{cases} W, & |W| \ge \delta, \\ 0, & |W| \le \delta, \end{cases}$$
(6)

其中: W表示变换系数; δ表示所选择的阈值。

在实际应用中,往往简单设定阈值 $\delta = 3 \sigma_n$ 便可得 到满意的去噪效果。

2.2 基于局部邻域信息的去噪算法

如前所述, Contourlet 变换是一种冗余因子为1.33 的冗余变换, 系数间显然是非独立的。尽管基于

Contourlet 变换的阈值去噪算法能获得较理想的效果^{III}, 为更进一步提高性能,还必须考虑系数间的这种非独 立性。换言之,应该用局部邻域中小波系数的"综合" 信息来确定系数的取舍,而不只是单单依赖于其本身 幅值的大小。下面将提出一种基于局部邻域信息的 Contourlet域图像去噪算法,这种去噪算法比经典的阈 值算法在性能上有显著的提升。

假设噪声图像满足模型
$$Y_l = X_l + \sigma_n \epsilon_l,$$
 (7)

式中: X_I 是干净图像; ϵ_I 是标准差为1的加性 Gaussian 白噪声, 即 $\epsilon_I \sim N(\vec{0}, I_N)$, 其中N为图像的维, I_N 表示 单位矩阵。首先, 应用 Contourlet 变换算子W于噪声 图像 Y_I , 得到噪声 Contourlet 变换系数 Y满足

$$Y = WY_{l} = WX_{l} + \sigma_{n}W\epsilon_{l} = X + \epsilon, \qquad (8)$$

其中 $\epsilon \sim N(\vec{0}, \rho_{\epsilon}), \rho_{\epsilon}$ 是噪声项的协方差矩阵。

基于 Contourlet 变换的图像去噪就是要从含噪系数 y 估计干净系数 X,从而获得原始图像 X,的估计。

尽管 Coutourlet 变换是一种线性变换(如式(8)所示), 白噪声的 Coutourlet 系数随位置的不同而有明显 差异,即 ρ_{s} 的对角线上的元素显著不同,这一点与小 波变换的性质完全不同。对于正交小波变换, ρ_{s} 具有 $\rho_{s} = \sigma_{n}I_{N}$ 的形式。考虑局部邻域信息的图像去噪,实际上要解决2个问题:首先要确定 Coutourlet 系数在不同位置时的噪声水平;其次要根据噪声水平与局部邻 域中的"综合"信号能量来估计干净系数。

对于前一问题,可以用 Monte-Carlo 方法估计每一 点的噪声方差:随机给定标准白噪声图象 N 次,设其 经 Contourlet 变换后生成的系数矩阵为:

 $\{Y^{(i)}; i = 1, 2, \cdots, N\},\$

则有无偏估计
$$I_N(f_t) = \frac{1}{N} \sum_{i=1}^N f_t(Y^{(i)}),$$

其中: f, 为某确定函数;

方差
$$\operatorname{var}(I_N(f_t)) = \frac{\sigma_{f_t}^2}{N},$$

 $\sigma_{f_t}^2 \triangleq E(f_t(Y)) - I^2(f_t) < +\infty$

根据大数定理,有 $I_N(f_t) \rightarrow I(f_t), (N \rightarrow +\infty, a.s.)$ 。当 f_t 为 恒等算子 I 时, $I_N(f_t)$ 即为系数矩阵 Y 的期望。所求 Contourlet 系数噪声水平为NVAR = var($I_N(f_t)$),称其为 噪声方差矩阵。对 $M \times M$ 的图象,对应的"噪声方差 矩阵"为1.33 $M \times M$ 维。NVAR矩阵中的每个元素对应 于标准高斯白噪声经 Contourlet 变换后每一系数的噪 声方差。

现在先将噪声图像分解为Conterlet系数,如式(8) 所示。将所得噪声系数 y 进行归一化处理

$$\mathbf{Y}' = \mathbf{Y}/NVAR, \qquad (9)$$

再在每一分辨率水平 $j = j_0$, …, J-1下, 将系数 Y' 剖 分为非重叠的、长度为L的局部邻域。令(jb)表示 在分辨率水平j下, 第b个邻域中系数位置的集合:

 $(jb) = \{(j,k): (b-1)L + 1 \le k \le bL\},$ (10) 并令 $S^{2}_{(j,b)}$ 表示邻域 (jb) 中归一化噪声系数的能量和。 在每一邻域 (jb),用 James-Stein 规则估计系数

$$x_{jk}^{\prime(jb)} = \max\left(0, \frac{S_{(j,p)}^2 - \lambda L \sigma_n^2}{S_{(j,p)}^2}\right) y_{jk}^{\prime} , \qquad (11)$$

其中X'表示所有 x'_{ik} 的集合。

利用 Contourlet 反变换,就能得到原始图像的估计。

3 仿真实验

为检验本文提出的基于局部邻域信息的 Contourlet 域图像去噪算法的有效性,下面给出几个图像去噪的 实例。

实验中所用图像为标准测试图像:Boat,Lena和 House,其中Boat和Lena大小为512×512,House大 小为256×256;3者均为255级灰度水平,含噪图像由 原图叠加不同噪声水平的高斯白噪声而成。实验中所 用去噪算法包括:基于正交小波变换的硬阈算法 (DWT,滤波器为Symlet-8);基于Contourlet变换的硬 阈算法;基于局部邻域信息的Contourlet域图像去噪 算法。另外,测试了一种基于尺度间相关性的 Contourlet域去噪算法,这种算法最初由Simoncelli等 在小波去噪的研究中引入^[14]。表1给出了不同噪声水 平下的实验结果(PSNR)。

从表1不难看出,对于各种噪声水平,正交小波 变换的PSNR值均低于其它方法,而基于局部邻域信 息的Contourlet域图像去噪算法要明显好于其它几种 算法。例如,对于Boat图像,在噪声水平为20时,基 于正交小波变换的硬阈算法比基于Contourlet变换的 硬阈算法大约低0.3 dB左右,而后者又比基于局部领 域信息的Contourlet域图像去噪算法低0.51 dB。

	衣I	云味住能に牧(PSNK)	
Table 1	Con	nparison of denoising performan	ce

(12)

丰喝方法	Lena			Boat				House				
ム 味 方 1ム	10	20	30	50	10	20	30	50	10	20	30	50
小波硬阈	31.01	28.04	26.18	23.13	29.46	26.20	24.48	22.30	30.66	27.08	25.16	22.94
Contourlet 硬阈	31.48	28.38	26.44	23.94	29.55	26.50	24.88	22.68	30.96	27.69	25.72	23.15
Contourlet 尺度间相关	31.65	28.57	26.69	24.23	29.90	26.85	25.07	22.93	31.28	28.00	25.93	23.59
Contourlet 局部领域	31.99	28.81	26.98	24.77	30.13	27.01	25.37	23.35	31.52	28.16	26.29	23.87

图4给出了噪声水平为20时的去噪图像。在图4b) 中,由正交小波得到的去噪图像存在点状"振铃效应" (也称伪Gibbs现象),在边缘处表现得尤其明显,且 边界模糊;与正交小波不同,Contourlet变换所得结果 呈现一种线状的"振铃效应",如图4c),4d)所示。这 与所用变换的基或框架元素的支撑区间形状有关:2-D 小波变换由1-D小波所张成,基的支撑区间呈正方型, 并随着尺度的增大而逐渐趋于点状;而Contourlet的 支撑区间呈长条型。值得注意的是,用Contourlet变换 所得结果不仅PSNR值比正交小波要高,更重要的是 不存在边界模糊的现象。

4 结论

本文提出了一种新的 Contourlet 图像去噪算法,这 种算法考虑了 Contourlet 系数间的非独立性,认为对 噪声系数的处理除了考虑其本身的幅值大小外,还需 考虑其局部邻域系数的影响。实验结果充分验证了本 文提出的算法不仅能得到较满意的"线形结构",而且 也能获得比现有方法更高的信噪比。

a) 含噪图像, PSNR=22.069 dB

c) Contourlet 硬阈去噪结果, PSNR=26.50 dB

b) 正交小波硬國去噪结果, PSNR=26.20 dB

d) 基于局部领域信息的Contourlet去噪结果, PSNR=27.01 dB

图 4 各种去噪方法的视觉比较(噪声标准差为 20) Fig. 4 Visual comparison of different denoising methods (at the noise standard distance 20)

参考文献:

- Joinstone I M. Wavelets and the theory of non-parametric function estimation[J]. Phil. Trans. R. Soc. Lond. A, 1999, 357: 2475-2493.
- [2] Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Trans. Image Processing, 2005, 14: 2091–2106.
- [3] Donoho D L. Wedgelets : nearly-minimax estimation of edges[J]. Ann. Statist., 1999, 27: 859–897.
- Pennec E L, Mallat S. Image compression with geometrical wavelets[C]// In Proc. of ICIP'2000. Vancouver: [s. n.], 2000: 661-664.
- [5] Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images
 [J]. Nature, 1996, 381: 607–609.
- [6] Donoho D L, Flesia A G. Can Recent Innovations in Harmonic Analysis 'Explain'Key Findings in Natural Image Statistics [J]. Network: Computation in Neural Systems, 2001, 12: 371–393.

- [7] Do M N, Vetterli M. Contourlets[M]. New York : Academic Press, 2003.
- [8] Burt P J, Adelson E H. The Laplacian pyramid as a compact image code[J]. IEEE Trans, Communication, 1983, 31: 532-540.
- [9] Do M N. Directional Multiresolution Image Representations
 [D]. Lausanne, Switzerland: Swiss Federal Institute of Technology, 2001.
- [10] Do M N, Vetterli M. Framing pyramids[J]. IEEE Trans, Signal Proc, 2003, 51: 2329–2342.
- [11] Do M N, Vetterli M. Pyramidal directional filter banks and curvelets[C]// Proc. IEEE Int. Conf. on Image Proc. Greece: [s. n.], 2001: 158–161.
- [12] Bamberger R H, Smith M J T. A filter bank for the directional decomposition of images: Theory and design[J]. IEEE Trans, 1992, 40: 882–893.
- [13] Donoho D, Johnstone I. Idearl spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994, 81: 425-455.
- [14] Simoncelli E P. Bayesian denoising of visual images in the wavelet domain[M]. New York: Springer-Verlag, 1999.