Eu(III)/Gd(III)-HTTA-POA-Phen 配合物的 合成与荧光性质研究

赵学辉,刘志国,胡舜钦

(湖南工业大学 绿色包装与生物纳米技术应用重点实验室, 湖南 株洲 412008)

摘 要: 合成一系列关于 Eu(III)/Gd(III)与 α -噻酚甲酰三氟丙酮(HTTA)、对甲氧基苯甲酸(POA)和邻菲罗啉 (Phen)的配合物,并运用元素分析、红外光谱与扫描电镜对这些配合物进行表征。结果表明:这些配合物的组 成为 Eu_{1-x}Gd_x(POA)(TTA)₂Phen ($x = 0 \sim 1$)。配合物 Eu(POA)(TTA)₂Phen 的荧光激发光谱并不是配合物 Eu(TTA)₃Phen 与 Eu(POA)₃Phen 的荧光激发光谱的简单组合,配体 TTA 因化学环境不同,在配合物 Eu(POA)(TTA)₂Phen 中的激 发带比在配合物 Eu(TTA)₃Phen 中的激发带发生明显的蓝移,这说明新的配合物已经生成。共发光 Gd³⁺离子对配 合物 Eu_{1-x}Gd_x(POA)(TTA)₂Phen 的荧光增强效果非常明显,掺杂配合物中 Eu³⁺与 Gd³⁺的物质的量的最佳比为3:2。 配合物 Eu_{1-x}Gd_x(POA)(TTA),Phen 的荧光增强机理主要是配合物分子间的能量传递。

关键词: 荧光性质; 结; 对甲氧基苯甲酸; α-噻酚甲酰三氟丙酮
中图分类号: O614.33
文献标识码: A
文章编号: 1673-9833(2007)02-0064-04

Research on Fluorescent Properties and Syntheses of Complexes of Eu(III)/Gd(III) with P-Methoxybenzoic Acid, α -Thenoyltrifluoroacetone and Phenanthroline

Zhao Xuehui, Liu Zhiguo, Hu Shunqin

(Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou Hunan 412008, China)

Abstract: A series of complexes of Eu(III)/Gd(III) with p-methoxybenzoic acid (POA), α –thenoyltrifluoro– acetone (HTTA) and Phenanthroline (Phen) were synthesized. These complexes were characterized by elemental analysis, IR spectrum, scanning electronic microscope. Their compositions are revealed to be Eu_{1-x}Gd_x(POA)(TTA)₂Phen ($x = 0 \sim 1$). The fluores–cent excitation spectrum of the complex Eu(POA)(TTA)₂Phen is different from those of the complexes Eu(TTA)₃Phen and Eu(POA) ₃Phen, and shows a peak position blue shift than that of Eu(TTA)₃Phen, which corresponds to the formation of the complex. The fluorescence Gd³⁺ ions to the Eu(III) complexes is clear. The optimum concentration of Gd³⁺ is 0.4 (molar fraction). The intermolecular energy transfer between Gd(POA)(TTA)₂Phen and Eu(POA)(TTA)₂Phen appears to be responsible for the fluorescence enhancement of Eu_{1-x}Gd_x(POA)(TTA)₂Phen .

Key words: fluorescent properties; Europium; P-methoxybenzoic acid; α -thenoyltrifluoracetone

0 前言

稀土有机配合物具有良好的发光特性,这主要是 由于稀土离子独特的4f电子结构与有机配体的天线效 应所致^[1]。有机配体通常在近紫外区域有一个宽而较 强的吸收带,如果它的三重态能级与稀土离子的最低 激发态能级匹配较好,由于天线效应,它们与稀土离 子之间的能量传递效率就会非常高,这将导致稀土离 子的发光强度明显增大^[2-4]。此外,有机配体能阻止稀 土离子与周围环境中的水与其它溶剂分子配位,这种

收稿日期: 2007-01-26

基金项目:湖南省教育厅基金资助项目(05B075)

作者简介:赵学辉(1967-),男,湖南湘潭人,湖南工业大学副教授,博士研究生,主要从事稀土配合物发光方面的研究.

屏蔽效应能减少稀土配合物的非辐射去活化导致的能量损失,提高稀土离子的荧光强度。另外,通过使用荧光惰性离子,例如,La³⁺、Y³⁺、Gd³⁺,也能提高稀土离子的荧光强度,这种现象被称作共发光效应^[5-7]。 共发光现象已经在许多单核配合物中得到了广泛研究,例如,Gd³⁺离子在单核配合物Eu(TTA)₃Phen^[5]与 Eu(TTA)₆(TPPO)₆^[7]中的共发光现象。

近年来,有些文献报道了 Eu³⁺ 与 β – 二酮类配体 (如: α – 噻酚甲酰三氟丙酮,二苯甲酰甲烷)和邻菲 罗啉形成的配合物的发光性质研究^[8,9]。但是有关 Eu³⁺ 与 α – 噻酚甲酰三氟丙酮、对甲氧基苯甲酸、邻菲罗啉 的配合物的合成与荧光性质研究尚未见文献报道。本文 报道了 Eu(III)/Gd(III)与 α – 噻酚甲酰三氟丙酮(HTTA)、 对甲氧基苯甲酸(POA)和邻菲罗啉(Phen)形成的配合物的 合成,并且对这些配合物进行了表征与荧光性质研究。 探讨了荧光惰性 Gd³⁺ 离子对配合物荧光强度的影响。

1 实验

1.1 试剂与仪器

Eu₂O₃、Gd₂O₃的纯度分别为99.99%、99.98%(江 西南方稀土所); α-噻酚甲酰三氟丙酮(北京化工厂)、 对甲氧基苯甲酸(上海化学试剂公司)、邻菲罗啉(天津 化工研究所)和其它试剂均为分析纯。

C、H、N元素分析用美国 Perkin-Elmer 2400 II CHNSLO型元素分析仪测定;稀土离子的质量分数用 EDTA 通过配位滴定测定;红外光谱用美国 Perkin-Elmer Nicolet-550型红外光谱仪测定,KBr 压片,记录 光谱范围为4 000~400 cm⁻¹;SEM 照片用日本 JSM-5600LV型扫描电镜,采用喷金技术测得;荧光光谱用 日本日立 Hitachi F-4500型荧光光度计测定。

1.2 配合物的合成

配合物Eu(POA)(TTA)₂Phen的合成 首先把Eu₂O₃溶 于热的盐酸,蒸发至近干后用乙醇稀释配成 0.1 mol/L乙 醇溶液。HTTA、POA 与 Phen 按 2:1:1 的物质的量之 比分别配成乙醇溶液。随后,把EuCl₃与HTTA按1:2 的物质的量之比混合,并调节pH值至5.5,水浴加热, 搅拌、回流40 min。然后,根据化学式Eu(POA)(TTA)₂Phen 的物质的量组成比,把Phen与POA滴加到反应混合液 中,调节pH值至6.5,将混合液转入高压釜中,130 $^{\circ}$ 高温下反应8h后取出冷却,过滤桔黄色沉淀并用乙醇 与蒸馏水洗涤两次,用乙醇重结晶提纯即得到产品。

配合物 Eu_{1-x}Gd_x(POA)(TTA)₂Phen 的合成 首先把 Eu₂O₃与 Gd₂O₃分别溶于热盐酸,蒸发至近干后,用乙醇 稀释配成 0.1 mol/L 的乙醇溶液。HTTA、POA 与 Phen 按 2:1:1的物质的量之比分别配成乙醇溶液。随后将 EuCl₃ 与 GdCl₃溶液按 x (x为配合物 Eu_{1-x}Gd_x(POA)(TTA)₂Phen 的下标)为0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0的比例 混合,并把混合溶液与 HTTA 按 1:2 的物质的量之比 混合,调节 pH 值至 5.5,水浴加热条件下搅拌、回流 40 min。接着,根据化学式 Eu_{1-x}Gd_x(POA)(TTA)₂Phen 的 物质的量组成比,把 Phen 与 POA 滴加到反应混合液中, 调节 pH 值至 6.5。将混合液转入高压釜中,130 ℃ 高温下 反应 8 h 后取出冷却,过滤桔黄色沉淀并用乙醇与蒸馏水 洗涤两次,用乙醇重结晶提纯即得产品。

配合物Eu(TTA)₃Phen的合成 其合成参照文献[5] 中所描述的过程,本文从略,产品是橘黄色的沉淀。

配合物 Eu(POA)₃Phen 的合成 把 EuCl₃、POA 与 Phen 的乙醇溶液按 1:3:1 的物质的量之比混合,保持 溶液的 pH 值为 6.5,水浴加热,搅拌、回流 90 min。最后, 过滤浅黄色沉淀,用乙醇洗涤,重结晶提纯即得产品。

2 结果与讨论

2.1 配合物的组成

利用配位滴定法,以二甲酚橙为指示剂、六次甲 基四胺为缓冲溶液,测定配合物中的稀土离子的质量 分数。利用元素分析法测定配合物中的C、H、N的质 量分数。测定结果见表1,结果表明:元素分析的实 验数值与化学式的计算值基本相符。

Table 1	Table 1 Elemental analysis data of the complexes						%		
配合物	Rare earth		С		Н		Ν		
	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	
Eu(POA)(TTA) ₂ Phen	16.15	16.42	46.76	46.72	2.45	2.51	3.08	3.03	
Eu _{0.7} Gd _{0.3} (POA) (TTA) ₂ Phen	16.50	16.62	46.63	46.64	2.43	2.50	3.01	3.02	
Eu _{0.5} Gd _{0.5} (POA) (TTA) ₂ Phen	16.75	16.67	46.50	46.59	2.42	2.50	2.97	3.02	
Eu _{0.3} Gd _{0.7} (POA) (TTA) ₂ Phen	16.79	16.72	46.43	46.54	2.36	2.49	2.94	3.01	

表1 一些配合物的元素分析数据

2.2 配合物的性质

表 2 为一些具有代表性化合物的红外光谱数据。 从表 2 可以看出,在1 392~1 398 cm⁻¹和1 537~1 544 cm⁻¹ 出现的吸收峰分别归属 Eu³⁺- 配合物中配体 POA 的羧 基对称伸缩振动 v_s 和反对称伸缩振动 v_{as} 吸收峰。反 对称伸缩振动与对称伸缩振动的波数差($\Delta v = v_{as} - v_s$)在145~147 cm⁻¹之间,这个值比对甲氧基苯甲酸 钠盐的反对称伸缩振动与对称伸缩振动峰之差值($\Delta v = v_{as} - v_s$) $v_{as} - v_{s} = 152 \text{ cm}^{-1}$ 小。羧酸根对金属离子的配位方式 与红外光谱中羧基的伸缩振动吸收峰密切相关。根据 Deacon 与 Taylor^[10-11]的研究报道,当配合物的 Δv 小 于离子型羧酸盐的 Δv (以羧酸的钠盐或钾盐为标 准),则表明配合物中羧基与金属离子的配位以双齿 螯合、双齿桥连或三齿螯合桥连配位方式为主;若配 合物的 Δv 大于羧酸盐的 Δv 值,则表明配合物中的 羧基以单齿配位作用为主。由此可知,上述配合物中 的羧基不是以单齿方式与 Eu^{3+} 配位而是以双齿或三齿 配位方式为主。另外,由于上述配合物中配体的空间 位阻较大,致使 Eu³⁺- 配合物中的配体羧基进行双齿 桥连与三齿螯合桥连配位比双齿螯合配位更困难,因 此双齿螯合配位模式应是上述配合物的主要配合方 式。其化学结构也应是以单核结构为主(图1示出了 配合物可能的化学结构)。另外,自由配体 HTTA 中的 羰基伸缩振动峰为1680 cm⁻¹,与 Eu³⁺ 配位后分别移至 1596~1609 cm⁻¹附近。C=N伸缩振动峰也由自由配体 Phen 中的1596 cm⁻¹,与 Eu³⁺ 配位后移至1552~1564 cm⁻¹ 附近。这些说明稀土离子已通过氧或氮原子分别 与配体 HTTA 与 Phen 发生了配位。

表 2 一些化合物的红外光谱数据 Table 2 The IR spectra data of the compounds

化合物	$v_{\rm s}$ (COO)/ cm ⁻¹	v_{as} (COO)/ cm ⁻¹	$\triangle (v_{as} - v_{s})$	v (CO)/ cm ⁻¹	$v (C=N)/cm^{-1}$
ТТА					1 680
NaPOA	1 401	1 553	152		
Phen					1 596
Eu(POA)(TTA) ₂ Phen	1 392	1 537	145	1596	1 552
Eu _{0.7} Gd _{0.3} (POA)(TTA) ₂ Pher	n 1394	1 539	145	1 598	1 556
Eu _{0.5} Gd _{0.5} (POA)(TTA) ₂ Pher	n 1 395	1 542	147	1 602	1 558
Eu _{0.3} Gd _{0.7} (POA)(TTA) ₂ Phen	n 1398	1 544	146	1 609	1 564

图 1 配合物 Eu(POA)(TTA)₂Phen 的化学结构 Fig. 1 Chemical structures of the complex Eu(POA)(TTA)₂Phen

配合物 Eu(POA)(TTA)₂Phen 的扫描电镜图像如图 2 所示。成团颗粒状结构的形成主要是通过分子的聚集 来实现。分子与分子间的作用力主要是范德华力。

图 2 配合物 Eu(POA)(TTA)₂Phen 的 SEM 图像 Fig. 2 SEM image of the complex Eu(POA)(TTA)₂Phen

2.3 固体配合物粉末的荧光性质

激发光谱的测定结果表明:配合物 Eu_{1-x}Gd_x(POA)(TTA)₂Phen的激发光谱除强度不同外,它 们的外形与配合物 Eu(POA)(TTA)₂Phen 的激发光谱基本 相似,图3为配合物粉末Eu(POA)(TTA)₂Phen、Eu(POA)₃Phen 与 Eu(TTA)₂Phen在220~450 nm 波长范围内的激发光谱。

 $a-Eu(POA)_3Phen; b-Eu(POA)(TTA)_2Phen; c-Eu(TTA)_3Phen$

图 3 配合物的激发光谱

Fig. 3 Excitation spectra of the complexes

从图 3 可看出,配合物 Eu(TTA)₃Phen 的激发光谱 带在 275~425 nm之间,最大激发波长约为 384 nm,它 对应配体 TTA 的吸收。配合物 Eu(POA)₃Phen 的激发光 谱带在 230~350 nm之间,最大激发波长约为 298 nm, 它对应配体 POA 的吸收。配合物 Eu(POA)(TTA)₂Phen 的 激发光谱带在 230~410 nm之间,且有两个激发峰,其最 佳激发波长约为 375 nm。配合物 Eu(POA)(TTA),Phen 的荧 光激发光谱并不是配合物 Eu(TTA)₃Phen 与 Eu(POA)₃Phen 的荧光激发光谱的简单组合。与配合物 Eu(TTA)₃Phen 的 激发光谱相比,配合物 Eu(POA)(TTA)₂Phen 具有更宽的 激发带,且激发带发生了明显的蓝移。这些实验结果 表明:配体 TTA 在不同的配合物中具有不同的配位环 境,也表明新的配合物已经形成。

荧光发射光谱测试结果表明,除发射强度不同 外,配合物Eu_{1-x}Gd_x(POA)(TTA)₂Phen均发射铕离子的特 征荧光。图4为配合物粉末Eu(POA)(TTA)₂Phen在550~ 710 nm 波长范围内的发射光谱。从图4可以看出,Eu³⁺ 的5个发射峰分别出现在约581.0、593.0、615.5、652.0与 704.0 nm 处,它们分别对应着Eu³⁺的⁵ $D_0 \rightarrow {}^7F_0$, ${}^5D_0 \rightarrow {}^7F_1$, ${}^5D_0 \rightarrow {}^7F_2$, ${}^5D_0 \rightarrow {}^7F_4$ 跃迁。5个Eu³⁺的 荧光发射峰,以 ${}^5D_0 \rightarrow {}^7F_2$ 既迁的相对荧光强度最强。 ${}^5D_0 \rightarrow {}^7F_2$ 比 ${}^5D_0 \rightarrow {}^7F_1$ 的跃迁强度大,表明中心Eu(III)离 子没有反演对称中心。

图 4 配合物 Eu(POA)(ITA)₂Phen 的友射光谱 Fig. 4 Emission spectra of the complex Eu(POA)(TTA)₂Phen

2.4 Gd³⁺离子对配合物荧光性质的影响

表 3 所示内容为 Gd³⁺离子浓度的变化对配合物 Eu_{1-x}Gd_x(POA)(TTA)₂Phen 体系荧光发射强度的影响。

表 3 掺杂配合物 Eu1-xGdx(POA)(TTA)2Phen 的发射峰位置与相对荧光发射强度

Table 3 Fluorescence spectra peak positions and relative intensities of

the doped complexes Eu_{1-x}Gd_x(POA)(TTA)₂Phen

nm

	λ	λ_{em} (relative intensity)							
Complex	ex —	${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	$I_{\rm calc}$	I_{exp}	$I_{\rm exp}/I_{\rm calc}$	${}^{5}D_{0} \rightarrow {}^{7}F_{2}$	$I_{\rm calc}$	I_{exp}	$I_{\rm exp}/I_{\rm calc}$
Gd(POA)(TTA) ₂ Phen	377	593.0	0	0		615.5	0	0	
Eu _{0.1} Gd _{0.9} (POA)(TTA) ₂ Phen	377	593.5	3.85	14.5	2.98	615.5	9.72	37.2	3.83
Eu _{0.2} Gd _{0.8} (POA)(TTA) ₂ Phen	377	593.5	7.70	24.0	3.12	615.5	19.4	84.4	4.35
Eu _{0.3} Gd _{0.7} (POA)(TTA) ₂ Phen	377	593.5	11.6	31.0	2.67	615.5	29.2	95.8	3.28
Eu _{0.4} Gd _{0.6} (POA)(TTA) ₂ Phen	377	593.5	15.4	37.8	2.45	616.0	38.9	119.4	3.07
Eu _{0.5} Gd _{0.5} (POA)(TTA) ₂ Phen	376	593.5	19.3	41.6	2.16	616.0	48.6	136.5	2.81
Eu _{0.6} Gd _{0.4} (POA)(TTA) ₂ Phen	376	593.5	23.1	42.5	1.84	616.0	58.3	137.8	2.36
Eu _{0.7} Gd _{0.3} (POA)(TTA) ₂ Phen	376	593.5	27.0	40.7	1.51	616.0	67.0	116.4	1.72
Eu _{0.9} Gd _{0.1} (POA)(TTA) ₂ Phen	376	593.0	34.7	39.4	1.14	616.0	87.5	105.5	1.21
Eu (POA)(TTA) ₂ Phen	375	593.0	38.5	38.5	1.00	615.5	97.2	97.2	1.00

由表3可知,配合物Eu_{1-x}Gd_x(POA)(TTA)₂Phen体系 首先随着掺杂Gd³⁺的浓度增加,掺杂配合物的荧光强 度增强;当x = 0.4(即Eu³⁺离子与Gd³⁺离子的物质的 量之比为3:2)时,掺杂配合物的荧光强度达到最大 值;然后随着Gd³⁺的浓度增加,掺杂配合物的荧光强 度下降;当Eu³⁺离子全部被Gd³⁺离子取代后,形成的 配合物Gd(POA)(TTA)₂Phen不再发光。另外,实验中还 发现,当Gd³⁺离子取代了4/5的Eu³⁺离子时,掺杂配 合物 I_{exp} (实验测定的掺杂配合物相对荧光强度)与 I_{eale} (掺杂配合物中Eu³⁺浓度与未掺杂配合物相对荧光强度 的乘积)的比值局部显示出较大值,说明掺杂配合物 在此Gd³⁺离子浓度下的共发光效果较好。这时,掺杂 Gd³⁺离子浓度正好是Eu³⁺离子浓度的4倍,即一个能 量受体配合物分子Eu(POA)(TTA)₂Phen周围正好被4个

能量捐体配合物分子 Gd(POA)(TTA)₂Phen 所包围。 这种结构可能更加坚固或者更具刚性,从而使得 能量受体分子与能量捐体分子之间的距离足够近。 当能量捐体分子 Gd(POA)(TTA)₂Phen 把吸收的能 量,通过分子间能量传递方式,传递给能量受体 分子 Eu(POA)(TTA)₂Phen时,这种近距离刚性结构 有助于减少能量损失,提高分子间的能量传递效 率,从而使掺杂配合物的共发光效果出现局部较 强的现象。如果掺杂 Gd³⁺ 离子浓度比上述浓度更 大,掺杂配合物荧光强度的减弱则主要是由于发 光中心 Eu³⁺离子数目的减少直接导致的。

3 结论

1) 合成了一系列 Eu(III)/Gd(III) 与(下转第78页)