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Abstract: By introducing a new weight norm in a space of infinite sequences, we proves that under some dissipative

conditions the first order lattice system possesses a global attractor, and also obtains an estimate of the upper bound of the

Kolmogorov's €-entropy of the global attractor.
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1 Introduction

Lattice dynamical systems (LDSs) are spatiotemporal
systems with discretization in some variables including
coupled ODEs and Coupled map lattice. LDSs arise in many
applications, for example, in chemical reaction theory, image
processing and pattern recognition, material science, biology,
electrical engineering, laser systems, etc. LDSs possess their
own form, but in some cases, they arise as spatial disc-
retizations of PDEs.

It is well known that in many cases the longtime
behavior of dynamical systems, generated by evolutionary
equation of mathematical physics can be described in terms
of attractors of the corresponding semigroup. In LDSs, it is
difficult to describe the geometric structure of the attractor
and to estimate the dimension of the attractor because,
generally, the attractor is infinite dimensional. One possible
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approach to handle this problem is to estimate the
Kolmogorov's €-entropy of the attractor' ).
In this paper, we consider the following lattice dynami-

cal system
i, =D, —2u +u )+ f(u,) u R, meZ. )]
urn (0) = Z'tm,(), me Z (2)

Where the matrix De R is positive definite (and not neces-
sarily symmetric), that is, there exists a number >0 such that
(Dv,v)2a(v,v), 3)
where ( , ) is the usual inner product in R*, the nonlinearity fis
globally Lipschitz continuous, that is, there exists L > 0 such
that
| fa) = FO)IE L u—v], Yu,ve R, @)
Where |v| is Euclidean norm of vin R". And for some @, B> 0,

flv)satisfies a dissipative estimate
v, f)s-av,v)+B, Vve R ®)
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Equation(1) can be regarded as a discrete analogue of a reac-
tion-diffusion equation in R : u=Du +f(u), where
u(x,t)e R*,De R**and xe R.

In [1, 4], a space discretization of the equation:
u, = pu_ — Au+ h(u) + g(x) is studied under the assumptions
1,2 > 0and uh(u) < 0 in the standard phase space /. Notice
that their assumption on /4 excludes travelling waves (in con-
trast to (5)) and hence allows for a compactness proof in /°.
It is clear that (4) and (5) are weaker than the assump-

tion uh(u)<0 in dissipative sense. Obviously,

Suw)y=—-au+ H'B_Zz and f(x) = —au +sinu which satisfy (4)
Pu .
and (5) correspond to A(u)= and h(u)=sinu,

1+u’
respectively, which not satisfying A(z)u < 0 for anyu e R.

In this paper, by introducing a new weight norm in
space of infinite sequences, we prove that under conditions
(3)~(5), the lattice dynamical system (1)~(2) possesses a glo-
bal attractor, and we obtain an estimate of the upper bound of

the Kolmogorov's £-entropy of the global attractor.

2 Preliminaries

Firstly, we recall some concepts related to the absorbing

set and the global attractor for a semigroup {S(¢)},., on a

20
complete metric space H.

Definition 1™ Assume that H is a complete metric
space and {S(1)} .,
on H. A subset D c H is called an absorbing set for {S(#)} -,
if D is bounded and every bounded set B < H is absorbed

into D in finite time. A subset A of a metric space H is called

is a semigroup of continuous operators

a global attractor for {S(#)},.,in Hif A isa compact invariant
set which attracts every bounded set in H.

In the following, we present a sufficient and necessary
condition for the existence of a global attractor for the semi-
group {S(#)} ., defined by general lattice dynamical systems
in a Hilbert space of infinite sequences (see [7] for detail ).

Let k € N be a fixed positive integer, Z denotes the set of
integers. The Hilbert space of infinite sequences is
H,={u=(u)_,|ie Z,u e R*} which endowed with the
inner product () and norm |||, as (,v), = Y (u,,v,), »

eZ
1

2 ly=(.u))?s 4= ()ezsv=(). € H,, where <, >,isa
inner product of R*.

We consider the following lattice dynamical system
with initial-value conditions in Hilbert Space H,;:

u=f(u), u=,).,, t>0;

{u(O) =)z € Hy, ©

Where f: H, — H, satisfy some dissipative conditions.

We assume that the solution u(r)e H, of (6)
exists globally in R, =[0,4e<}, and maps of solution
Sy u, »u(t)=S(t)u(0)e H, t >0 generate a continuous
semigroup {S(¢)},, on H,, then we have the following
theorem.

Theorem 1"
bal attractor A in H, if and only if the following two condi-
tions hold:

1) There exists a bounded set B, ¢ H,, (independent of i
€ Z) such that B, is an absorbing set for the semigroup
SO} o0

2)Ve >0, there exist T(¢g), I(¢)e N such that the
solution u(¢)e H, of problem (6) with initial data , € B,

The semigroup {S(¢)},,, possesses a glo-

20

where u(f)=(u,(t),, € H,, satisfies Y, |u();<&’,
)

V¢ > T(¢),where|-|, is the norm of R* induced by the product
<>y

3 Existence and Uniqueness of Solutions

We can write (1) and (2) in the following form
= Au+ f (u), )
u(0)=u,, ®)

where u = (u,)) u,_ € R*, the operator 4 is defined by

meZ>
(Au),, =D(u,,, —2u_ +u__Yyand(f(u)), = f(u,). Note that
(Au), =D(9,0 u),,.where

(a+u)m =u

First of all, we introduce a weight function

Z’lm’ (afu)m = um _umfl ‘

ml

. 1
p(x)= (1 + pzxz) ! Jixy > E,pis aparameter, which satisfies:
(D [p'®)].| p"(x) IS ¢ (p)p(x), Where ¢ (p)—0 as
p—0
(IT) Let p, = p(m) = (1+p2m2)7'v, me Z, there exist
that

constants ¢,,c,>0 , ¢,=c¢;'=e”’, such

Gp, <pmth)<ep,. Yme Z-
(IIT) There exists a,(p)>0 such that
J(p)=2p, Sa(p).
In fact. by
zpm =1 +22(1 +p'm’ )_y <1+ 2p’2y2m’27,
m=1

m=1

oo

1 _
and when ¥ >5, Zm ?

m=l

"is convergent, we know that z D,

is convergent. Note that z = z

(IV) It follows from (I) and (IT) that there exists a function
a,(p) such that a,(p) > 0as p > 0and|d p, [<a,(p)p,.
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(V) Wefix pso small that equality (7) with pu, we have
c3a2(p)<min{l,iz,a,2L} <, pu >=< Au,pu>+<f(u),pu>. )

2D . .
. . We now estimate the terms in (9) as follows.
Below we work with this fixed p. 1 d
For v= (vm)mez and w= (Wm)mEZ’Vm’Wm S Rk: let < l/l,pll >= EE || u ”gp .
<v,w>=Y"(v,,w,), where(,-)is the usual inner product of ByLemma?2,
2
R". Define < Au, pu >< —[o _M Jn dull,+
<v,w> =< v,pw>=2pm(vm,wm), )
c3a2 p 2
Ivle,=<v,pv>=3p, v, [ — ot Il -
Let Z, be a space of infinite sequences (v,) _, =V By (5),
v, € R*,equipped with the norm|| v ||, ,=I| v|l, , HI 9_v |, , for <f@,pu><BY p,—ay.p,lu,l =
anyv=(v,),., ﬂJ(P)_OCH“”g,p .
We assume that £ =(f(u,)) _,. By (4) and (II), we By (V) and above inequalities, we have
have: d 2 2 2
v, <=olo_ul,, ~alul,, +287(). (o)

17 @)= F ), <Gy llu=vll,,.
where C, is a constant, i.e., f(u) is globally Lipschitz con-
tinuous from Z, to Z,. By the standard theory of ordinary
differential equations, we obtain the following lemma.

Lemma 1 Under the assumptions (3)~(5), for any
u, € Z,,, there exists a unique global solution u(¢) of (7) ~ (8)
such that u € C([0,+c°),Z ).

This establishes the existence of a dynamical system
{S(#)},., which maps Z, into Z,, such that for each u, € Z ,
S(t)u, =u(t)> the solution of (7)~(8).

4 Absorbing Set

Lemma 2 For any ve Z , the following inequality
holds:

D 2
< Av, pv >S—(G—%)H vk, +

Sy,

Proof The proofis similar to that of Lemma 2.1 in [8].

Now we show that the system (7)~(8) has a bounded
absorbing set in the space Z,,

Lemma 3 Under the assumptions (3)~(5), there exists
a bounded ball of Z,, » B, ,(0,r,) centered at 0 with radius r,,

such that B, ,(0,r,) is an absorbing set for the system (7)~(8)

on Z,, where ro22\/[3J(P)+2\/2L(G)+2Lﬂj(p)
o ac

(independent of m). Therefore, there exists a constant 7,>0
depending on B, ,(0,r,) such that S(#)B, ,(0,%,) =B, ,(0,%),
Vit >t,.

Proof Take the scalar products of both sides of the

d
So, & ey, <—ellull, +2BI(p)-
We assume that || #(0)[|, ,< R (a positive constant).
Applying Gronwall Lemma to the above inequality, we have

< peer 2BI0) 4BI0)
a (4

lu(o)l3,,

2
viz iR,
a 2BJ(p)
Take the scalar products of both sides of equality (7) with

—pd,d_u, we have
<it,—p9,0_u >=< Au,—pd . 0_u>+< f,—pd 0_u>.

We now estimate the terms in (11).

(11)

<u,—pd,d_u>=<pd 1,0 u>+<(d_p)T 1,0 u>,
here and below (7_v),=v

m=1>

Let L, =< pd 4,0 u>,L, =<(0_p)T 4,0 u >.
1d
Then L, ZEEHBJ H(Z),p .
<Au,—pd,d_u><—c|0,9_u Hép .
< f(u),—p0,d_u>=< pd_f(u),0_u>+
<d_p(T, f(u)),0.u>.
Let R, =< pd_f(u),d_u >, R, =<d_p(T, f(u),d.u’>.
Then R < L||d_u ||§’p .
Let R =R,~Ly, by f(u )—t  =—(AT 1)
R'=<DJ.0 (T ,u),0 pd u >, and similarlyto Lemma 2,we

we have

m?

can get the estimate
o1
IR |< 5(0302(1?) IDIP10,0.u s, +ay(p)I10u k).
By (V) and above inequalities, we have

d
a||87u||(2)’p3 AL(1+[0ulf,)- (12)
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Substitute (10) into (12)» we have

4L d

pprl L [F

d 2
m llo_uli, <4L+

8LBJ(p)
e}
Multiplying both sides of the above inequality with

e and integrating on [0,¢]> we have

19 ulE, < (o +4L)R’ _w+l(4L+8LﬁJ(p))S
c a c
8L[c+2LBJ(p)] _ e
oc 2
+ 2
Vtzi a(c+4L)R

n—————=¢.
a  ALlc+2BJ(p)]

Let t=max{t,t} we have that,

when >1,

@, D Nl + 1 0_u@) |y, S/ +71 =1,

The proof is completed.

5 The Global Attractor

Lemma 4 Assume thatu, € B, ,(0,7,) (the absorbing
set of system (7)~(8)). Then for every €> 0, there exist £,( €)
and /( €) such that

i ; Vit (g).
[%ﬁ““”Tzzﬂﬁﬂ )

Where I( €) and t,( €) only depend on &,
and || D||.
Proof

p’a’B’U’L

Choose a smooth function 0 such that
0(s)=0, 0<s<1;
0<6(s)<], 1252,
O(s)=1, s=2.

positive constant. Let M be a fixed integer which will be speci-

10°(s)|<C, se R*, where Cis a

_ L
fied later, and setv =(v,),_, with v, =0 ;i i

Then taking the inner product of (7) with pv, we get
<u, pv>=< Au, pv>+< f(u), pv>. (13)
We now estimate the terms in (13) as follows,

<u pV>—_—Z P (|;\Z|J|um |2 .

< Au,pv>=—=<Dd_u,pd_v>—
< DO_u,(d_p)T v)>.

<DI_u,pd_v>20 p, 9( '](a u), [+

Y p. [D(au)m,a [0 (%' Juml J]

Let N =max{c.|| D|'}, we have

<

oo (51

CN
ZMW“M””W

|< D _u,(0_p)(T v)>I<

SRILIS Y (%M)
ca2(p)z ( )|u|

< flu),pv>< —OCZPMQ('A’Z J u, ﬂz (|m|)

Let m=2a—c,a,(p). By(V), we know that & > 0. By (V)
and above inequalities, we have,

d | m | 2 m| 2
— ol — ||u |"+ Ol — |lu <
4 pm(M)lm szm(M u, |

CNr

N2
¢ VZ_I

+2B, for Vi 2¢,.

By (II), we know that, for & >0 given, there exists I( )
such that when M > I( €) ,

2
CNrO L2p Z p. < e

Iz 8(1+‘/2(l+c3)) . (14)

Therefore, we obtain that, for all > ¢, and M > I( &) ,

d | m 2
o] 2] <
3 2P (A,)Iu Fapd ( )pmluml

2

e
8(1+,/2(1+c3))2 (15)
By llully,sllull,,,Yu=(u,)

we have||u, ||, ,< 7. By(15) and Gronwall Lemma, we have,

»and |lu ||, < 7y,

meZ

when ||, ||, ,< 7,

m] —u(i—ty) .. 2 &€
pm |7/l (t)| <e Ur + 2"
2 ( 8(1+1/2(1+c3))

2
| 8(1+1/2(1+c3)) r?
Let ¢ =maxqf,,f,+—In 2 > then for

2

t>t(€)and M>I( €),wehave

memwzmpm%ﬁs

=2 M

82

4(1+1/2(1+c3))2’

which complete the proof.
Theorem 2 Under the assumptions (3)~(5), the semi-

group {S()} ., possesses a global attractor A C B, in Z,,

and for eachue A, u=(u,),., =V,) ez +(W, ), =V+W,
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lwll,,< £ Where is defined by Theorem 2 B |
2 Proof The proofis similar to that of Theorem 3 in [9].
u,, | mi<i(e), 0, |mI<I(e);
= W = .
" 0,|m>1(¢). " u,, |mp>I(e). (16) References:

1( €) is the least integer M satisfying the inequality (14).
Proof  Theexistence ofthe global attractor A < B, ,(0,7,)
is easily proved by Theorem 1 and Lemma 3, 4. By Lemma 4, we
knowthat, foreachye A, u=(u,),., =V,) .z T W, )0z =

m’ where v, w, aredefined

v—i—w’ H w H(),pS

by (16).
By the estimate Hu||]’pS(1+,/2(1+c3))||u||0’p, we

g
know that | wl|, ,< 5 The proof is completed.

6 Kolmogorov's €-Entropy of the
Global Attractor

In the following, we will consider the Kolmogorov's &-
entropy of the global attractor A of system (7)~(8).
Definition 3"

attractor A is the logarithm of the minimal number N(A) of

The Kolmogorov's €-entropy of an

&-balls covering the attractor in the phase space, i.c.,
K (A)=1nN (A).
Theorem 3 Forany € >0,

2, (21 () + 1) +1
el pl(e)

bound of the Kolmogorov's &entropy of the global attractor

_ k
0=I(s)+1) In is an upper

A'in the topology of Z, where r, is the same in Lemma 3, I( &)
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