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Abstract: A novel four-dimensional fractional-order chaotic system, which possesses an infinite set of
equilibrium points, has been constructed by introducing memristors, with the approximate solution of the system to be
obtained based on the Adomian Decomposition Method (ADM). Through Lyapunov exponent spectrum and bifurcation
diagram analyses, it is demonstrated that the system exhibits such dynamical behaviors as stable state, period doubling
bifurcation, and chaotic state under single parameter variation. An analysis of the Lyapunov exponent distribution
diagram, phase diagram, and time series diagram manifests double-vortex scroll chaotic attractors, as well as period-1,
and period-2 attractors, under dual parameters in the system. Both Spectral Entropy (SE) and C, complexity analyses
confirm that parameter b exerts a more significant influence on the complexity of the fractional-order Lorenz memristive
system.
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