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摘　要：通过引入忆阻器构建了一新四维分数阶混沌系统，该系统具有无限平衡点集，并基于 Adomian
分解法求得了系统的近似解。利用 Lyapunov 指数谱、分岔图分析，揭示了该系统在单参数变化下表现出稳

定态、倍周期分岔及混沌态等行为。经 Lyapunov 指数分布图、相图和时间序列图分析发现，双参数下该系

统存在两个双涡卷混沌吸引子、周期 1 态及周期 2 态吸引子。谱熵 SE 和 C0 复杂度表明，参数 b 对分数阶

Lorenz 忆阻系统复杂度的影响更加显著。
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Abstract：A novel four-dimensional fractional-order chaotic system, which possesses an infinite set of 
equilibrium points, has been constructed by introducing memristors, with the approximate solution of the system to be 
obtained based on the Adomian Decomposition Method (ADM). Through Lyapunov exponent spectrum and bifurcation 
diagram analyses, it is demonstrated that the system exhibits such dynamical behaviors as stable state, period doubling 
bifurcation, and chaotic state under single parameter variation. An analysis of the Lyapunov exponent distribution 
diagram, phase diagram, and time series diagram manifests double-vortex scroll chaotic attractors, as well as period-1, 
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1 研究背景

自 20 世纪 60 年代以来，分数阶微积分逐渐成为

国际学术界关注的研究热点之一。在混沌系统动力

学研究领域，分数阶微积分理论被广泛引入，国内

外学者相继证明了一些经典混沌系统的分数阶系统

同样能展现混沌行为，如 Chen 系统、Lorenz 系统、

Duffing 系统 [1-3]。这些研究结论促进了分数阶微积分

的发展和混沌理论体系的进步。忆阻器作为一种具有

非线性特性的电路元件，适合用于构建混沌电路。近

年来，部分学者通过在经典混沌系统中引入忆阻器或

替代原有非线性元件，构造出了一系列具有丰富动力

学行为的新型忆阻混沌系统 [4-6]。Wu P. 等 [7] 通过在

Lorenz 系统中引入一个二次忆阻器，构造了新的忆

阻混沌系统。Wu H. 等 [8] 研究了一类以忆阻器作为

反馈器的简化 Lorenz 混沌电路系统的特性。尽管分

数阶混沌系统 [9-11] 已取得较多的研究成果，但关于

分数阶忆阻混沌系统的相关文献仍较为有限。此外，

目前针对同时以分数阶阶数 q 和系统参数作为双变量

分析的文献仍较为少见。

在数值求解方面，因 Adomian Decomposition 
Method（ADM）的计算精度较高、收敛速度较快，

故被广泛应用于分数阶混沌系统仿真与分析中 [12-13]。

基于上述分析，本文提出了一种基于 Adomian 分解

法的分数阶忆阻 Lorenz 系统，并重点研究了分数阶

阶数 q、系统参数和系统复杂度（谱熵 SE 和相关复

杂度 C0）之间的关系。

2 基于忆阻器反馈的分数阶简化

Lorenz 系统

2.1 分数阶导数定义  
定义 1 Riemann-Liouville 分数阶积分定义为

         

式中：J t
q 为函数 f(t) 的 q 阶积分算子，q 为阶次；

Г(·) 为 Gamma 函数；t0 为微分算子的下界；t 为上界。

定义 2 分数阶 Caputo 微分定义为

     

式中：Dq
t 为函数 f(t) 的 q 阶 Caputo 微分算子；f (n)(τ)

为 f(t) 的 n 阶导数；n∈N。

当 n-1<q<n 时，Caputo 分数阶导数 Dq
t 与分数阶

积分 J q
t 的关系为

 

在零初始条件下，Caputo 定义的分数阶导

数和整数阶微分具有相同的形式，而且实验证明

Caputo 定义下的微积分物理意义更加明确。因此，

本文的模型将采用分数阶 Caputo 微分定义的微分

算子。

2.2 分数阶系统设计

文献 [14] 提出了一种磁控忆阻器，该忆阻器具

有光滑连续非线性的特点。在这里定义流经忆阻器的

电荷为 q，则有源磁控忆阻器可表示为

              

式中：a、b 为系统参数，且为不等于零的常数；φ
为流经忆阻器的电荷量。

根据忆阻器的忆导公式得

                       

式中：w(φ) 为忆阻器的忆导，即其电导值，是电荷

量 φ的函数。

通过简化，得到整数阶忆阻简化 Lorenz 电路 [15]

的无量纲方程为

            （1）

式中：x、y、z、w 为系统状态量；c 为系统参数；k
为与忆阻器有关的系数。

分数阶电路具有物理实现的简洁性和记忆特性，

且可扩展参数调控维度，故很多系统为分数阶系统。

根据文献 [11, 13]，对于每个状态变量 i（i =x, y, z, w），

将整数阶导数 替换为分数阶导数 。

对系统（1）中的第一个方程两边应用积分 J q
t，

可得

            

       

即

              

对上式两边应用微分 得

       

同理，可以推导出系统（1）其他方程的分数阶

形式，最终得到如下分数阶系统（2）：
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        （2）

2.3 平衡点稳定性分析

为了研究分数阶忆阻器简化 Lorenz 电路的动力

学行为，接下来对其系统稳定性进行分析。

定理 1 当 ，且

26.6<c<35 时，对于分数阶系统（2）的特征值 λi （i=1, 
2, 3, 4），系统的平衡点 E 渐近稳定。

证明 令系统（2）的左边都为 0，可得平衡点

集E={(x, y, z, w)|x = y = z, w = α}。其中，α为任意实数，

则该分数阶系统（2）具有无限的平衡点集。

计算系统（2）的 Jacobian 矩阵，为

      

通过对 JE 矩阵进一步处理，可得到其特征值

λi（i=1, 2, 3, 4）。 其 中：λ1=-3， 对 应 arg(λ1)= π；
λ2=0，对应 arg(λ2) 可以任意取值；剩余的两个特征值

分别如下：

λ3、λ4 与 有关：

1）当 ∆>0 且 26.6<c<35 时， 显然
成立。

2）对于 ，有 ∆<(35-c)2，

，整理后即

，故有 ，因而可以
得出 26.6<c。

当 ∆>0 且 26.6<c<35 时，λ3 和 λ4 都为负实数，有

，满足

根据分数阶系统稳定性判据 [16]，则有系统的平衡点

E 渐近稳定。

定理证毕。

2.4 分数阶系统求解

记 x1=x、x2=y、x3=z、x4=w，用 Adomian 分解法

对系统中的线性项 L 和非线性项 N 进行分解，可得

令 则根据 Adomian
分解法和分数阶微分性质可得

      

将系数赋值到对应变量，即有

  

可见，只要求出每一项对应的系数即可。如第六项的

系数如下：

从而可得系统（2）的方程近似解为

   

选定参数 q=0.95、a=15、b=0.02、c=10、k=1，
且初始条件为 (1, 0, 1, 0)，运用 Matlab 对其进行数值

计算，得知系统存在混沌吸引子（见图 1）。
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3 参数变化对系统的影响

为了进一步研究 4 个系统参数变化对于分数阶系

统的非线性行为的影响，接下来采用 Lyapunov 指数

图、分岔图以及谱熵（spectral entropy，SE）和相关

复杂度 C0 图（correlation complexity）等方法，分析

单参数变化下系统的动态演化特征，绘制双参数控制

下的 Lyapunov 指数分布图，计算其混沌效应最大值

取值点和最小值取值点，并绘制其对应的相图以及时

间序列图。

3.1 单参数变化分析

选取参数 a、b、c 以及 k 各自不同的取值区间，

系统呈现出丰富的动力学行为。不同参数下的最

大李雅普诺夫指数与分岔图对照表见表 1，系统的

Lyapunov 指数图及分岔图如图 2 所示。

由图 2 可知，在参数 a 和 c 的变化区间中，系统

经历了从周期性到混沌再到稳定的转变，存在多个周

期窗口和分岔点。其中，当参数 c 增大时，系统存在

反向分岔，即随着参数增大，分支数减少。

  当 k=0 时，系统将不受忆阻器的影响，等同于

除去第四维，动力学行为与 Lorenz 系统一致。随着

忆阻器参数 k 的增加，系统在混沌和周期性状态之间

交替。

                   c）y-z 相图                              d）x-w 相图

图 1 分数阶混沌系统状态量相图

Fig. 1 Fractional order chaotic system state variable 
phase diagram

表 1 不同参数下最大李雅普诺夫指数与

分岔图对照表

Table 1 Comparison table of maximum Lyapunov exponent 
and bifurcation diagram under different parameters

参数取值 固定参数
最大李雅普诺夫

指数范围
图形编号

a∈[-15, 30] q=0.98, b=0.02, c=10, k=1 [-0.762 9, 2.504 6] 图 2(a, b)

b∈[-10, 2] q=0.98, a=15, c=10, k=1 [-1.336 9, 2.248 3] 图 2(c, d)

c∈[-15, 30] q=0.98, a=15, b=0.02, k=1 [-0.936 5, 2.161 4] 图 2(e, f)

k∈[0, 2] q=0.98, a=15, b=0.02, c=10 [-0.733 3, 0.600 5] 图 2(g, h)

                    a）x-y 相图                              b）x-z 相图

a）a∈[-15, 30] 时的指数图

b）a∈[-15, 30] 时的分岔图

c）b∈[-10, 2] 时的指数图

d）b∈[-10, 2] 时的分岔图

e）c∈[-15, 30] 时的指数图

f）c∈[-15, 30] 时的分岔图

g）k∈[0, 2] 时的指数图
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图 3 中展示了不同参数下系统的吸引子形态：a
图为双涡卷混沌吸引子，体现复杂混沌行为；b 图为

周期态转变，显示系统从有序到混沌的过渡；c 图和

d 图分别呈现周期 2 和周期 1 的规则轨道，反映系统

在参数变化下的动力学演化过程。

相比之下，参数 b 的变化对系统混沌行为具有显

著的调控作用。随着参数 b 变化，系统从稳定态进入

周期态，并经历多次周期倍分岔，最终演变成混沌态。

相较于其他参数，b 的变化对系统从有序向混沌转变

的影响更为显著。

  

3.2 复杂度分析

固定其他参数不变，得到的单参数变化下的谱熵

SE 和 C0 复杂度图如图 4 所示。

通过对比图 4 和图 2 可知，不同参数变化下所对

应的分岔图与 SE 和 C0 复杂度图是较为吻合的。

从图 2 可看出，系统处于周期运动状态时，SE
和 C0 复杂度值均较小；随着系统逐渐向混沌状态过

渡，SE 和 C0 值也随之增大，系统呈现出从周期态向

混沌态的演化趋势。

对比不同参数的 SE 与 C0 复杂度图和均值数据

（见表 2），可以得知参数 b 变化对于系统复杂度的

影响更显著。

3.3 双参数变化分析

绘制的系统参数 (a, b, c, k) 和分数阶 q 双参数控

表 2 不同参数下的 SE 均值与 C0 均值

Table 2 SE and C0 mean value under different parameters

参数 SE 均值 C0 均值

k 0.377 5 0.099 2

a 0.382 6 0.091 5

b 0.575 0 0.201 4

c 0.439 2 0.003 3

                     c）c=26                                d）c=29.5
图 3 不同参数下的系统吸引子图

Fig. 3 System attractor diagrams under different parameters

d）k 变化时

图 4 不同参数变化下的谱熵 SE 和 C0 复杂度图

Fig. 4 SE and C0  complexity graphs under varying parameters

a）a 变化时

b）b 变化时

c）c 变化时

b）b=-4a）a=-10

h）k∈[0, 2] 时的分岔图

图 2 不同参数变化下的李雅普诺夫指数图及分岔图

Fig. 2 Lyapunov exponent and bifurcation diagrams under 
varying parameters
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制下的 Lyapunov 指数分布图见图 5，图中颜色越深 表示 Lyapunov 指数越大，对应的混沌效应越强。

                                         c）c 和 q 变化                                                                                      d）k 和 q 变化

图 5 双参数变化下的李雅普诺夫指数分布图

Fig. 5 Distribution diagram of Lyapunov exponent under dual parameter variation

                                        a）a 和 q 变化                                                                                     b）b 和 q 变化

表 3 双参数变化下的李雅普诺夫指数表

Table 3 Lyapunov exponent table under dual parameter variation

双参数 区间范围 最大值 最小值 图形编号

a 与 q

a∈[-15, 30], q∈[0.95, 1.00] 0.482 6 (a=17.00, q=0.96) 0 (a= -15, q=0.95)

图 6a∈[5, 10], q∈[0.97, 1.00] 0.500 9 (a=8.80, q=0.98) 0 (a=7.10, q=0.97)

a∈[15, 19], q∈[0.95, 0.98] 0.518 6 (a=18.55, q=0.96)(A1 双涡卷混沌吸引子 ) 0 (a=15, q=0.98)(A2 周期 2 态涡卷吸引子 )

b 与 q
b∈[-10, 2], q∈[0.95, 1.00] 0.480 6 (b= -6.00, q=0.96) -0.251 3 (b= -5.5, q=0.955)

图 7
b∈[-10, -5], q∈[0.95, 1.00] 0.507 4 (b= -5.8, q=0.99)(B1 混沌吸引子 )

-0.251 3 (b= -5.5, q=0.955)
(B12 周期 1 态涡卷吸引子 )

c 与 q
c∈[-15, 30], q∈[0.95, 1.00] 0.520 6 (c=23, q=0.975) 0 (c= -12, q=0.95)

图 8
c∈[18, 25], q∈[0.96, 0.98] 0.520 6 (c=23, q=0.975)(C1 混沌吸引子 ) 0 (c=10, q=0.98)(C2 周期 2 态涡卷吸引子 )

k 与 q

k∈ [0, 2], q∈[0.95, 1.00] 0.483 5 (k=0.30, q=1.00) 0 (k=0.20, q=0.95)

图 9k∈ [0.2, 0.8], q∈[0.95, 1.00] 0.492 1 (k=0.46, q=0.99)(K1 双涡卷混沌态吸引子 ) 0 (k=0.20, q=0.95)(K2 混沌吸引子 )

k∈ [1.6, 2.0], q∈[0.95, 1.00] 0.484 6 (k=1.96, q=0.98) 0 (k=1.60, q=0.98)

选取不同区间内的系统参数和 q ∈ [0.95, 1.00]
进行分析，进一步对区间进行细分研究，最终得到

了各区间内的混沌最大值点和最小值点，计算结果

见表 3。

对比表 3 中的数据，发现最大值 B1（0.507 4）
和最小值 B2（-0.251 3）混沌值差异最为显著。

进一步绘制各区间内混沌最大值点和最小值点

的相图轨迹，具体见图 6~9。
图 6 中，A1 为双涡卷混沌吸引子，A2 为周期 2 态

涡卷吸引子；图 7 中，B1 为混沌吸引子，B2 为周期 1
态涡卷吸引子；图 8 中，C1 为混沌吸引子，C2 为周期

2 态涡卷吸引子；图 9 中，K1 为双涡卷混沌态吸引子，

K2 为混沌吸引子。由图 6~9 可发现，系统呈现出丰富

的动力学特性。最大值点的轨道呈现较为分散的蝴蝶

翼形状，点和轨道分布更加离散，混沌特性更强；而

最小值点的轨道蝴蝶翼形状更加规整，系统行为更加

规则，轨道分布更加集中。

针对最大值 B1 和最小值 B2，绘制对应的时间序

列图（见图 10）。由图 10 可知，系统的最大值点时

间序列在前 3 500 个时间步长内表现出明显的周期性

波动，之后振幅逐渐减小，然后再次增大。而最小

值点时间序列表现出稳定的周期性波动，振幅相对

一致。其结果揭示了两者在动态行为上存在显著的

差异。
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            d）x-y 平面上的最小值处相图                     e）x-z 平面上的最小值处相图               f）三维平面图上的最小值处相图

图 6 最大值 A1 点和最小值 A2 点的相图

Fig. 6 Phase diagram of the max value A1 point and min value A2 point

            d）x-y 平面上的最小值处相图                     e）x-z 平面上的最小值处相图               f）三维平面图上的最小值处相图

图 7 最大值 B1 点和最小值 B2 点的相图

Fig. 7 Phase diagram of the max value B1 point and min value B2 point

             a）x-y 平面上的最大值处相图                 b）x-z 平面上的最大值处相图                 c）三维平面图上的最大值处相图

             a）x-y 平面上的最大值处相图                 b）x-z 平面上的最大值处相图                 c）三维平面图上的最大值处相图

             a）x-y 平面上的最大值处相图                 b）x-z 平面上的最大值处相图                 c）三维平面图上的最大值处相图



61唐思佳，等　　基于 ADM 的一类分数阶 Lorenz 混沌系统动力学分析第 4 期

            d）x-y 平面上的最小值处相图                     e）x-z 平面上的最小值处相图               f）三维平面图上的最小值处相图

图 8 最大值 C1 点和最小值 C2 点的相图

Fig. 8 Phase diagram of the max value C1 point and min value C2 point

            d）x-y 平面上的最小值处相图                     e）x-z 平面上的最小值处相图               f）三维平面图上的最小值处相图

图 9 最大值 K1 点和最小值 K2 点的相图

Fig. 9 Phase diagram of the max value K1 point and min value K2 point

                        a）最大点 B1 点（b=-5.8，q=0.99）                                             b）最小点 B2 点（b=-5.5，q=0.955）
图 10 最大值 B1 点和最小值 B2 点的时间序列图

Fig. 10 Time series chart of the max value B1 point and min value B2 point

             a）x-y 平面上的最大值处相图                 b）x-z 平面上的最大值处相图                 c）三维平面图上的最大值处相图

5 结语

本文通过在分数阶 Lorenz 混沌系统中引入忆阻

器作为反馈项，构建了一个新四维分数阶混沌系统。

在定量方面，基于 Adomian 分解法可以求得系

统的近似解，同时进一步分析得知该系统具有无限平

衡点集，这为系统产生丰富吸引子提供了可能性。

在定性方面，单参数变化下的系统呈现复杂的动

力学行为。Lyapunov 指数谱、分岔图表明，分数阶

系统在混沌态和周期态之间变化。双参数变化下的系

统具有参数敏感性和复杂动力学转换性，这一特性通

过双参数 Lyapunov 指数分布图、状态变量极值（最

大值与最小值）的相图以及对应时间序列演化图得到

了验证。根据谱熵 SE 和 C0 复杂度图，得出了参数 b
对于分数阶Lorenz忆阻系统复杂度的影响较为显著，

这为分数阶电路系统的研究提供了新思路。尽管本研

究数值模拟已验证了系统的混沌与周期行为，但其硬
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件实现与控制应用仍有待探索。
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