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融合加权RSS 相似度与斯皮尔曼的限制性

WiFi 室内定位方法
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摘　要：针对 WiFi 室内定位中由于 RSS 相似度差异以及空间模糊度造成的定位精度低问题，提出了一

种融合加权 RSS 相似度与斯皮尔曼相关系数的限制性自适应 K 最近邻室内定位方法。首先，根据不同 RSS
值赋予不同的权重值，再与斯皮尔曼相关系数融合得到调整后的加权 RSS 欧氏距离计算在线位置指纹与数

据库中的位置指纹的相似度。然后，根据自适应目标群体筛选得到候选参考点的个数。最后，通过先验位置

设置矩形窗和下移参数选择最终的参考点，并将最终位置估计为它们的加权中心。实验结果表明，所提算法

相较对比算法，能有效提高定位精度，其中比 WKNN 算法提高了 52.42%。
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A Constrained Indoor Positioning Approach with Weighted RSS Similarity and 
Spearman’s Rank Correlation Integrated
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Abstract：In view of the low positioning accuracy brought about by RSS similarity differences and spatial 
ambiguity in WiFi indoor positioning, a constrained adaptive K-nearest neighbor indoor positioning method has thus 
been proposed, which integrates weighted RSS similarity and Spearman correlation coefficients. First, different weight 
values are assigned based on varying RSS values, with the Spearman correlation coefficient combined to obtain an 
adjusted weighted RSS Euclidean distance for calculating the similarity between online location fingerprints and those 
in the database. Then, the number of candidate reference points can be obtained based on the adaptive target population 
screening. Finally, the final reference point is selected by setting the rectangular window and downward parameter 
based on the prior position, with the final position estimated as their weighted center. The experimental results show that 
the proposed algorithm can effectively improve the positioning accuracy compared to other algorithms, with a 52.42% 
improvement compared to the WKNN algorithm.
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0 引言 
随着无线通信技术和智能设备的快速发展，室内

位置服务技术在许多领域中越来越重要。因而多种室

内定位技术，如红外线、蓝牙、WiFi 等，相继出现。

其中，WiFi 技术因其广泛的基础设施覆盖和智能设

备内置的支持，成为一种便捷且经济高效的室内定位

解决方案 [1]。

WiFi 室内定位技术主要分为基于位置指纹的定

位技术和基于测距的定位技术两类 [2-3]。其中基于位

置指纹的定位技术主要包括离线和在线两个阶段，

离线阶段收集位置指纹并构建数据库，在线阶段通

过终端的 WiFi 模块捕捉周围 AP 的信号，再与指

纹数据库的数据进行接收信号强度（received signal 
strength，RSS）相似度比较估计位置。

目前，位置指纹算法中关注度较高的是机器学习

方法和确定性方法。机器学习方法 [4-9] 通过对训练数

据集进行特征提取和模型训练，将测试点映射到具

体位置；而确定性方法则以较低计算复杂度实现可

接受的定位精度。文献 [10] 提出的 SAWKNN 算法在

传统 WKNN（weighted k-nearest neighbor）算法的基

础上提出了自适应目标筛选 K 值。文献 [11] 研究的

SRL-KNN 算法结合用户运动规律引入范围因子。文

献 [12] 阐述的 SRL-SAWKNN 算法通过融合自适应

目标筛选和范围因子来进行定位。文献 [13] 探讨的

RWKNN 算法增加了轨迹约束和搜索矩形框以降低定

位的空间模糊度。然而，SRL-KNN、SRL-SAWKNN
和 RWKNN 算法均未充分考虑 RSS 相似度对定位结

果的影响。文献 [14] 设计的 WAKNN-HIF 算法通过

改进 RSS 相似度来进行定位，但是未对空间模糊度

的影响进行深入分析。虽然各种方法被提出用于提

高定位精度，但均仍然面临一些问题。首先，传统

的确定性算法使用单个 RSS 相似度的倒数来衡量与

参考点数据库的距离，不能很好地反映位置接近度。

第二是多径效应和信道衰落等现象会导致空间模糊

度加大，即在不同位置接收到的信号特征相似，从而

难以区分准确位置的情况。基于这些问题，室内定位

的精度仍有待提高。

本研究提出了一种 WSP-SAWKNN（weighted 
RSS similarity Spearman corrlation coefficients-
SAWKNN）算法，其主要贡献如下：

1）提出了根据不同 RSS 值赋予不同权重的方法；

2）将斯皮尔曼相关系数与加权后的 RSS 结合，

构建了一种加权 RSS 欧氏距离度量方法；

3）提出了一种利用先验位置信息设定矩形窗以

限制搜索范围，然后结合自适应目标群体筛选选取参

考点的位置估计算法，确保了定位结果的合理性和准

确性。

1 系统模型

1.1 基于位置指纹的室内定位系统框架

图 1 为基于位置指纹的室内定位系统框架图，分

为离线阶段和在线阶段。

对于离线阶段，核心工作是建立指纹数据库。首

先需要在选定的室内场所中部署实验环境，对采集的

位置指纹数据进行预处理，最后构建位置指纹数据

库。对于在线阶段，主要是完成定位查询。首先需要

将在线状态下测试点信号强度值与离线状态下位置

指纹数据库匹配，采用融合加权 RSS 相似度与斯皮

尔曼相关系数的方法计算在线指纹与离线数据库各

参考点之间的相似度差异，再结合定位算法进行位置

估计，求得定位坐标。

1.2 离线阶段

离线阶段的关键目标是建立指纹数据库，该过程

又包含两个步骤：一是采集离线指纹信息；二是对指

纹信息进行预处理。

1）采集离线指纹信息。在选定的室内场所中部

署实验环境，建立坐标系，设置多个参考点，详细记

录参考点的坐标位置、MAC（media access control）
地址和 AP 信息。第 i 个参考点的位置记为 (Xi, Yi)，
在定位区域内共有 M 个可接入点（AP），m 为 AP
的序号，参考点的总数为 N 个。在参考点处连续多

次采集信号强度并记录。

2）指纹数据预处理。在实际情况下，通过处理

异常值，再求均值，将第 i 个点的位置指纹数据记为

图 1 基于位置指纹的室内定位系统框架图

Fig. 1 Block diagram of indoor positioning system
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   RSSi=[RSS1, RSS2, …, RSSm, …, RSSM]i。     （1）
最后，构建位置指纹数据库，每个参考点的位置

坐标与位置指纹一一对应。

表 1 为位置指纹数据库数据示例。

1.3 在线阶段

在线阶段主要是将获取到的测试点的信号强度

值与离线数据库中的指纹数据进行比较，得出定位

结果。

1）定位查询。使用采集模块采集用户当前 RSS
位置，即测试点的指纹信息，将第 j 个测试点的位置

指纹数据记为

  RSSj=[RSS1, RSS2, …, RSSm, …, RSSM]j。    （2）
2）相似度差异计算。将上述测试点的位置指纹

与离线位置指纹数据库进行比较，计算相似度差异，

计算公式如式（3）所示，式中 s 为可调参数，可用

来定义计算向量之间的距离。传统算法通常将 s 设为

1，即计算欧几里得距离。

                               （3）

3）位置估计。计算相似度差异之后，根据位置

匹配算法进行位置估计，计算公式见式（4）：

                           （4）

式中：loc(xi, yi) 为最后的定位位置；wl 为第 l 个参考

点对应的权重值；K 为筛选出的参考点总数。

2 融合加权 RSS 相似度与斯皮尔曼
的限制性室内定位算法

2.1 问题分析

1）RSS 相似度差异。图 2 为 RSS 相似度差异

示意图。由于 RSS 值与物理距离呈指数关系，使得

RSS 值的空间分辨率呈现出不均匀的分布特性。计

算得出的同一测试点与不同参考点之间的 RSS 相似

度相同，将不同位置的数据同等看待，但它们的实际

距离可能存在差异。

2）空间模糊度。图 3 为空间模糊度导致定位误

差示意图。

假设当 K 设定为 4 时，理想情况下应选择黑色

虚线框内的参考点。但是，由于多径效应和信道衰落

的影响，无线信号在不同甚至较远的位置上也可能呈

现出相似的特征，这导致算法错误地选择了绿色虚线

框内的点。因此，选取的 K 个参考点变得不具代表性，

最终引起位置估计出现误差。

2.2 总算法流程

图 4 为总算法流程图，详细描绘了定位算法的具

体过程。

图 2 RSS 相似度差异示意图

Fig. 2 Schematic diagram of RSS similarity differences

图 3 空间模糊度导致定位误差示意图

Fig. 3 Schematic diagram of localization error due to 
spatial ambiguity

图 4 总算法流程图

Fig. 4 General accounting flowchart

表 1 位置指纹数据库示例

Table 1 Location fingerprint database

位置坐标 位置指纹

(X1，Y1) [RSS1, RSS2 …, RSSm, …, RSSM]1

(X2，Y2) [RSS1,RSS2 …, RSSm, …, RSSM]2

(Xi，Yi) [RSS1, RSS2 …, RSSm, …, RSSM]i

(XN，YN) [RSS1, RSS2 …, RSSm, …, RSSM]N

… …

… …
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首先初始化参数，计算在线阶段实际位置和离线

构建的指纹数据库，以评估它们之间的 RSS 相似度

差异。随后，依次设置相似度加权值并且加入斯皮尔

曼相关系数。然后，通过自适应算法找到最优 K 值，

并依据此 K 值从数据库中挑选出最具有代表性的 K
个参考点。接着，进行轨迹约束以及下移操作，对指

纹库进行深度筛选。最后，基于这些选定的参考点符

合轨迹约束和下移操作计算出各自的定位结果，并求

解所有定位结果的中心位置，若下移次数超过 DR 则

使用 SAWKNN 算法的定位及结果。

2.3 加权 RSS 相似度

信号强度（RSS）[15] 是指接收天线接收到的无线

电信号的功率水平，通常用来衡量无线通信链路的质

量。信号在传输到接收机时，经历的平均射频通常会

减弱，称为路径损耗。信号在 Friis 自由空间的传输

公式 [16] 如下：

                              （5）

式中：Pt 和 Pr 分别为发送功率和接收功率；Gt、

Gr、L 分别为发送天线增益、接收天线增益、系统损

耗系数；α为波长；m 为 AP 的序号数；di
m 为参考点

距离 AP 的距离。

选取距离 d0
m 作为参考距离，则接收端接收功率

与参考点接收功率之比为

                                                （6）

将式（6）中功率转换为以 dBm 为单位，则路径

损耗模型又可以表示为式（7）[17]。在实际的信道传

输环境中，信号传输通常不会是在理想的自由空间中

进行，因此引入径损耗指数 λ，在自由空间中 λ=2，
其他情况下通常取决于具体环境。

                           （7）

式中： 为参考点距离 AP 的 RSS 值； 为距

离 d0
m 参考距离的 RSS 值，一般设置 d0

m 为 1 m。

同时，任意两个参考点之间的 RSS 差值，即

RSS 相似度为

           （8）

根据式（7）（8），可得两点之间的距离差，即

位置接近度为

 （9）

由式（9）可知，位置接近度 与 RSS 相似

度 呈指数关系，这种关系会导致 RSS 空间分

辨率分布不均匀。当 固定时，RSSi
m 值越小，

值越大。因此，传统的欧几里得距离公式无

法精确测量信号传播距离的误差。为了解决这个问

题，应该根据不同 RSS 值赋予不同的权重值。这是

因为在越远的距离上，移动设备采集到的 RSS 值波

动就越大，定位误差也随之增大。因此，RSS 权重

值应设计为随 RSS 值减小权重值也相应减小的单调

递减函数。

本文提出一种加权 RSS 相似度方法，将第 i 个
参考点中第 m 个 AP 的 RSS 权重值 设为

                                              （10）

根据式（5）可知，接收功率与接收距离的平方

成反比，进一步推导可得，接收信号强度又与接收距

离成对数关系。因此式（10）中， ，

为参考点的权重值； ，为测试点的权

重值，RSSj
m 为测试点距离 AP 的 RSS 值。将权重值

与对应的欧几里得距离相乘，求和后得到加权 RSS
相似度 df，如式（11）所示：

                           （11）

与式（3）相比，加权相似度考虑了 RSS 空间分

辨率分布不均匀，通过为不同的 RSS 值分配适当的

权重，能更精细地捕捉信号强度的变化，进而实现更

为精准的定位。

2.4 斯皮尔曼相关系数

斯皮尔曼相关系数是用于描述两组数据之间的

等级相关程度的统计分析指标。通过使用斯皮尔曼相

关系数计算数据库中参考点与测试点之间的关系，可

以更好地考虑不同维度 RSS 值可能存在的差异性 ρ，
如式（12）所示：

     （12）

式中： ，表示数据库中某一参考

点测得的平均 RSS 值； ，表示某

一测试点测得的平均 RSS 值。

上述斯皮尔曼相关系数 ρ 的取值范围为 [-1, 



50 湖　南　工　业　大　学　学　报  2026 年

1]，当 -1 ≤ ρ<0 时，两组数据之间为负相关；当

1 ≥ ρ>0 时，两组数据为正相关；当 ρ=0 时，没有单

调关系。在理想情况下，TP 与 RP 之间的 RSS 值呈

现单调正相关。但在实际环境中 RSS 值可能因受到

噪声等干扰而导致相关性降低，通过增强正相关性

能能更准确地反映 TP 与 RP 之间的空间关系，提高

定位精度 [18]。因此，将斯皮尔曼相关系数 ρ改进为

完全呈现正相关，S 的取值范围为 [1, 3]，计算式如

式（13）所示：

 （13）

最后，将上述加权 RSS 相似度与改进后的斯皮

尔曼相关系数一一进行对位相乘操作，以此获得最终

调整后的加权 RSS 欧氏距离（WS）。这种方法不仅

融合了 RSS 相似度提供的空间位置信息，还结合了

斯皮尔曼相关系数所反映的时间序列模式特征，使得

计算出的距离值更加贴近实际情况，提高了定位结果

的准确性和可靠性。

2.5 先验位置信息的范围限制

为了克服空间模糊问题，本文设计了一种利用先

验位置信息的方法来施加范围约束。由于在室内环

境中，终端设备的移动速度往往很低，所以在相邻

的采样时刻之间，设备的移动距离应当小于或等于其

最大可能的位移。为此，引入了一个范围限制（range 
limit，RL）参数，以确保定位结果更精确和合理。

将终端设备最高速度设为 Vmax，采样时间间隔为 T，
空间模糊度参数为 σ，范围限制的计算式如式（14）
所示：

                           RL=Vmax·T+σ。                      （14）
在进行位置匹配的过程中，采用了自适应目标筛

选机制来动态设定 K 值，从而仅选择排序靠前的 K
个数据点作为候选。因为用户的当前运动状态很大程

度上与其之前的运动状态密切相关，所以引入了“矩

形窗口（rectangular window，RW）”的概念，通过

限定匹配范围至一个更为合理的局部区域，提高了搜

索效率和定位精度。具体而言，是将矩形窗口参数设

置为两倍的 RL，有效地缩小了搜索空间。

                           RW=2·RL。                            （15）
当相邻定位点间测得的距离大于规定的范围限

制时，算法将依次选取次优的 K 个参考点重新计算，

直至找到符合物理运动轨迹且信号相似度合理的定

位结果。

这种方法确保了在复杂环境中维持定位的连贯

性和准确性，避免了因单一计算失误导致的性能下

降。然而，其准确性依赖于前一时刻位置 (Xt-1, Yt-1)
的精度，若该位置误差较大，可能会陷入局部最优解。

为此，引入下移限制参数（downward restriction，
DR），当下移操作次数超过 DR 而仍无法找到有效

定位结果时，停止搜索并且使用自适应筛选的结果作

为最终输出。

3 实验结果和分析

3.1 实验环境搭建

整个实验区域由 10 个小型实验室组成，并通过

一条走廊相连，总面积约为 960 m2。表 2 为实验环

境布局参数。图 5 为本研究实验场所的室内定位系统

布局。

实验设置中，在目标楼层部署了 9 个接入点，相

邻参考点之间的距离保持在 1 m，以确保覆盖的均匀

性和精度。

3.2 实验参数对比

所提算法主要涉及以下参数：关系程度阈值 r、
自适应最大 K 值、空间模糊度参数 σ、下移限制参数

DR。实验中将分别调整每个参数值，同时保持其余

参数不变，以系统地评估其对算法效果的具体贡献。

3.2.1 关系程度阈值 r
图 6 为算法在不同阈值 r 下的定位平均误差。

表 2 实验环境布局参数

Table 2 Experimental environment layout parameters
AP 总数 参考点数 测试点数 单点扫描次数 单点 AP 数

339 155 860 100 27~61

图 5 实验环境示意图

Fig. 5 Schematic diagram of experimental environment

图 6 不同阈值下算法平均误差

Fig. 6 Average error of algorithms under different thresholds
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由图 6 可知，当参数 r 取值为 0.4 时，算法的定

位精度最高，得出的平均误差最小，为 2.65 m。当 r
低于 0.4，算法选出的参考点数将减少，不足以维持

必要的相关性水平，因此可能会降低定位精度。随着

参数 r 值从 0.4 逐渐增大，使得更多的数据点被纳入

计算，算法的判断次数增加，提升了其复杂度，从而

使定位误差缓慢增加。因此，选择 r=0.4 作为本算法

的最佳关系程度阈值参数。

3.2.2 最大 K 最近邻值 Kmax

图 7 为算法在取不同 Kmax 值时的定位平均误差。

由图 7 可知，当 Kmax 取值为 4 时，算法的性能

达到最优，能够实现平均定位误差取得最小值，为2.65 
m。随着 Kmax 的进一步增加，定位结果的最佳 K 值

包含在内，虽然误差出现轻微波动，但总体上保持在

一个相对稳定的范围内。因此，选择 Kmax=4 作为本

算法的最佳参数值。

3.2.3 空间模糊度参数 σ
图 8 为算法在取不同 σ下的定位平均误差。其中，

WS-SAWKNN 为考虑 WS 的 SAWKNN 策略。

由图 8 可知，当 σ取值 1.2 m 时，算法定位精度

最高，得到最小的平均误差，为 2.65 m。当 σ小于 1.2 
m 时，由于矩形窗区域面积较小导致筛选到数据库

中参考点的数量较小，从而忽略了更加接近实际位置

的参考点，最终导致定位效果不佳。随着 σ的取值逐

渐增大，偶尔会出现矩形窗失效的结果。当 σ达 16 m
左右时，算法完全退化为加权斯皮尔曼 SAWKNN 算

法，导致定位效果不佳。因此，选择 σ的取值为 1.2 m
作为本算法的最佳空间模糊度参数值。

3.2.3 下移限制参数 DR
图 9 为算法在取不同 DR 下的定位平均误差。

由图 9 可知，当 DR 值逐渐增大，算法允许更多

的数据点进行位置修正，导致下移次数逐渐增加，算

法会舍去一部分陷入局部极值的异常值，导致定位精

度逐渐增大。当 DR 的取值为 6 时，平均定位误差取

得最小值。当 DR 大于 6 后，下移次数继续增加，平

均定位误差保持在 2.65 m 左右，并未出现进一步的

显著下降，表明所有定位结果都满足在 RL 所限制的

范围内，最终定位精度保持不变。因此，选择 DR=6
作为本算法的最佳下移限制参数值。

3.3 加权 RSS 欧氏距离算法实验结果

表 3 为融合了加权 RSS 相似度与斯皮尔曼相

关系数后，采用 WKNN、SAWKNN、SRL-KNN、

SRL-SAWKNN、WAKNN-HIF 和 RWKNN 算法的平

均定位误差。

分析表 3 中的数据可知，融合后算法的平均定位

误差分别减少了 1.37, 1.03, 1.33, 0.92, 0.23, 0.59 m。

这表明，算法在不改变原有算法结构的情况下，有效

表 3 加入 WS 算法后各算法平均定位误差与

传统算法结果对比

Table 3 Comparison table of average localization errors of 
algorithms with WS algorithm added, compared to

traditional algorithm results

算 法 WKNN SAWKNN SRL-KNN

传统算法 /m 5.67 4.73 5.63

加入 WS 算法 /m 4.30 3.70 4.30

算 法 SRL-SAWKNN WAKNN-HIF RWKNN

传统算法 /m 4.54 3.81 4.46

加入 WS 算法 /m 3.62 3.58 3.87

图 7 不同 Kmax 下算法的平均误差

Fig. 7 Average error of algorithms under different Kmax

图 8 不同 σ下算法的平均误差

Fig. 8 Average error of algorithms under different σ 

图 9 不同 DR 下算法平均误差

Fig. 9 Average error of algorithms under different DR
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提升了现有定位技术的准确性。

3.4 实验结果对比

为了更加公正和客观地评估验证所提算法的性

能，在保证其他实验环境相同的前提下，将本文所提

算法分别与 WKNN、SAWKNN、SRL-KNN、SRL-
SAWKNN、WAKNN-HIF、RWKNN 算法进行了对比。

每个算法均进行了 261 次实验。表 4 为各算法的平均

误差、标准差、置信区间（95%）。

为便于观察，将表 4 中的实验结果，利用小提琴

图来呈现各算法的误差定位状况。区别于其他可视化

工具，小提琴图结合了箱形图和密度图的特点，不仅

提供了数据的基本统计信息（图中从上至下 4 个数据

依次是上四分位数、均值、中位数、下四分位数），

还能直观地展示数据在不同位置上的概率密度分布。

图 10 为各算法的具体误差定位状况分布图。

采用小提琴图展示各算法的定位误差可以迅速

了解数据点的集中程度和分布特征，进而更好地

评估各算法的表现。结合表 4 和图 10 分析表明，

WSP-SAWKNN 算法具有最小的标准差和最窄的

置信区间，在所有测试中表现出最好的定位效果和

稳定性，其平均定位精度达到了 2.65 m，相对于

WKNN、SAWKNN、SRL-KNN、SRL-SAWKNN、

WAKNN-HIF、RWKNN 算 法 分 别 提 高 了 52.42%, 
43.98%, 45.59%, 41.63%, 26.18%, 40.58%，并且可以

清楚地观察到本文所提算法定位精度更为集中，主要

分布在 2.40~2.91 m 之间。

4 结语

随着智能设备的普及，WiFi 无线网络快速发展，

这对于室内定位技术的应用具有重要意义。本文针

对在线阶段直接使用 RSS 相似度的倒数来衡量与参

考点数据库的距离不能很好地反映位置接近度以及

空间模糊度问题，提出了一种融合加权 RSS 相似度

与斯皮尔曼的限制性自适应K最近邻室内定位算法。

通过根据不同 RSS 值赋予不同的权重值，再与斯皮

尔曼相关系数融合，更好地考虑两组数据不同维度

RSS 值可能存在的差异性，然后得到调整后的加权

RSS 欧氏距离（WS）。最后，通过引入先验位置信

息设置矩形窗口，并采用下移参数选择参考点，从而

实现更为精确的最终位置估计。

通过大量实验选取算法最优参数值，实验结果

表明，WSP-SAWKNN 算法能有效提高定位精度，

相对于传统 WKNN、SAWKNN、SRL-KNN、SRL-
SAWKNN、WAKNN-HIF 和 RWKNN 算 法 平 均 定

位误差分别提高了 52.42%, 43.98%, 45.59%, 41.63%, 
26.18%, 40.58%，并且定位精度分布更集中和稳定。

然而，该算法仍然存在因数据采集工作量大，使得在

多楼层等复杂场景中计算复杂度增大导致实时性降

低的局限性，需要不断改进和完善。
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