
  第 40 卷 第 4 期
  2026 年 7 月

湖　南　工　业　大　学　学　报
Journal of Hunan University of Technology

Vol.40  No.4   
July  2026

DOI：10.20271/j.cnki.1673-9833.2026.4005

基于改进YOLOv8 的试管条码旋转目标检测算法
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摘　要：针对全自动流水线前处理阶段中试管表面条码粘贴角度倾斜和夹爪遮挡导致传统检测算法难以

精确定位条码区域的问题，提出一种基于改进 YOLOv8 的试管条码旋转框检测算法。首先，使用 GhostConv
替换主干网络中的 Conv 模块，通过高效特征生成方法在显著降低计算量的同时实现与传统卷积相近的特征

表现；接着，在 C2f 模块中引入 Star 模块，通过高维非线性特征映射增强模型的特征提取能力；同时，使用

CCFM 特征融合网络替换颈部网络，降低计算量。最后，引入 CARAFE 上采样方法，改善传统上采样方法

引起的模糊效应。实验结果表明，改进模型在自制数据集上的准确率、召回率、mAP@50-95 分别提高了 2.8%, 
2.1%, 6.6%，同时模型复杂度降低了 27.7%，能够实现真实场景中对试管条码的精确定位。
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An Improved Yolov8-Based Algorithm for Test Tube Barcode Rotation Target Detection
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Abstract：A test tube barcode rotation box detection algorithm has been proposed based on improved YOLOv8 
in view of the flaw of traditional detection algorithms being difficult to accurately locate the barcode area brought about 
by the inclined angle of barcode pasting on the surface of the test tube and the obstruction of the gripper during the pre-
processing stage of the fully automated assembly line. Firstly, GhostConv is adopted to replace the Conv module in the 
backbone network, thus achieving feature representation similar to traditional convolution while significantly reducing 
computational complexity through efficient feature generation methods. Next, the Star module is introduced into the 
C2f module for an enhancement of the feature extraction capability of the model through high-dimensional nonlinear 
feature mapping. Meanwhile, the neck network is to be replaced with a CCFM feature fusion network, further reducing 
computational complexity. Finally, the CARAFE sampling method is introduced to improve the blurring effect brought 
about by traditional sampling methods. The experimental results show that the improved model is characterized with a high 
accuracy and recall on self-made datasets mAP@50-95, achieving an increase of 2.8%, 2.1%, and 6.6% respectively, while 
reducing the model complexity by 27.7%, thus enabling precise positioning of test tube barcodes in real-world scenarios.
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0 引言

在全自动流水线 [1] 的前处理过程中，准确定位

试管表面的条码是确保样本溯源和后续检验流程有

序进行的关键。条码信息 [2]通常用于标识样本的来源、

类型以及患者信息，并作为关键数据载体，在后续处

理和检测流程中发挥重要作用。条码定位的准确性直

接影响到医疗流水线检验的可靠性。

理想的条码粘贴方法是将条码垂直贴附在试管

表面，以确保解码器能够清晰地识别条码区域。然而，

条码粘贴通常由人工完成，导致条码可能存在一定角

度的倾斜。此外，在条码识别过程中，试管通常由机

械夹爪夹持，这可能导致夹爪机械臂遮挡条码区域。

在这种情况下，传统的视觉识别定位算法难以准确定

位条码区域。

目前，常见的条码定位算法包括特征点检测、形

态学操作、目标检测等方法。例如，彭楷烽等 [3] 提

出一种通过自适应分块技术对图像进行分块，运用主

成分分析（principal component analysis，PCA）对梯

度方向一致的图像块进行筛选，并结合形态学方法对

条码进行定位。万伟彤等 [4] 通过使用 CenterNet 主干

网络进行特征提取，结合 CSP（cross stage partial）
模块和深度可分离卷积，在复杂背景下实现条码定

位。刘云等 [5] 通过使用 YOLOv8-pose 算法，并引入

通道注意力机制和 SlimNeck 特征融合网络，成功实

现对 QR（quick response）码角点的精准检测。

尽管上述算法从不同角度提升了条码定位的精

度，但仍存在一定的局限性。具体而言，特别是对

于倾斜条码，上述方法无法准确获取条码的倾斜角

度，从而影响后续的译码操作。近年来，随着算法

的不断迭代，多位学者提出旋转框目标检测算法，

以精确获取物体的位置和倾斜角度。张相胜等 [6] 通

过在 YOLOv7 中引入可变卷积和融合坐标注意力

（coordinate attention，CA）机制，增强目标位置

特征表示，同时使用旋转框长边精确表示目标边

界，并结合高斯分布的 KL 散度（Kullback-Leibler 
divergence）作为损失函数，实现了目标旋转框的高

精度回归。Deng H. M. 等 [7] 采用基于扩张卷积的加

权特征金字塔网络作为 YOLOv7 的特征融合网络，

通过高质量的信息交互实现对旋转目标的准确检测。

Feng S.等 [8]将加权双向特征金字塔网络（bi-directional 
feature pyramid network，BiFPN）和高效多尺度注意

力机制（efficient multi-scale attention，EMA）模块相

结合，同时提出基于稳定扩散的数据增强方法扩增数

据集，在轻量化的同时得到了高效的检测结果。

为了解决试管条码定位问题，本文提出一种基于

改进 YOLOv8 的试管条码旋转框检测算法。具体改

进如下：1）在主干网络中，采用 GhostConv 模块替

代传统的卷积层，利用高效的特征生成方法，在较低

计算资源下实现与传统卷积相同的效果。2）在 C2f
模块中，引入 Star 模块代替传统卷积模块，通过元

素级乘法融合不同子空间的特征，从而提升特征表达

能力。3）使用跨尺度特征融合模块 CCFM（cross-scale 
feature fusion module）替代 PANet（path aggregation 
network）模块，通过轻量级的卷积操作实现跨尺度

的特征融合，增强多尺度信息的整合效果。4）使用

CARAFE（content-aware reassembly of features）模块

替代原有的上采样方法，通过内容感知机制有效保留

更多细节特征，以减少模糊现象和信息丢失。

实验结果表明，改进算法能够精确定位试管条

码。与 YOLOv8 旋转框检测算法相比，本文算法在

满足检验要求的同时，显著减小了模型参数量，提高

了检测准确率，有助于推动智能医疗的发展。

1 YOLOv8 算法

1.1 YOLOv8 网络结构

YOLO（You Only Look Once）算法 [9] 是一种单

阶段目标检测 [10] 算法。该算法将输入划分为 S×S
个网格，每个网格负责预测位于其区域内的目标。

YOLOv8 网络架构由 3 个主要部分组成：Backbone、
Neck 和 Head。Backbone 部分负责特征提取，包括

CBS、C2f 和 SPPF 模块。Neck 部分用于特征融合，

通过双向路径融合不同尺度的特征信息。Head 部分

负责生成 3 个不同尺度的预测框。YOLOv8 网络结

构如图 1 所示。

YOLOv8 损失函数由类别损失和边框损失两部

分组成。类别损失采用二元交叉熵（binary cross-
entropy，BCE）损失函数，边框损失则由完全交并

图 1 YOLOv8 网络结构图

Fig. 1 Network structure of YOLOv8
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比（complete intersection over union，CIoU）损失 [11]

和 DFL（distribution focal loss）损失 [12] 两部分构成。

CIoU 损失是基于 IoU、GIoU（generalized IoU）和

DIoU（distance IoU）的扩展，其综合考虑了预测框

和真实框的宽高比和中心点距离。DFL 损失则通过

引入标签值附近的概率分布，使模型能够更快聚焦于

标签值，从而生成边界更加清晰的预测框。

1.2 YOLOv8-OBB
相比水平目标框检测，旋转目标检测更适用于对

物体预测边界要求较高的应用场景。通过回归旋转角

度，旋转目标检测能够生成更加紧凑的边界框，减少

预测框中的冗余信息。水平检测框和旋转检测框的

对比结果如图 2 所示。YOLOv8 旋转检测框（oriented 
bounding box，OBB）是在 YOLOv8 的基础上，采用

旋转检测头替换原有的水平检测头，并采用 Prob IoU
（probabilistic intersection over union） 损 失 [13] 替 代

CIoU 损失。

Prob IoU 损失通过高斯分布建模目标边界框，能

够更有效地捕捉目标形状和位置的不确定性。其计算

过程如下：预测框和目标框均采用五维向量 [x, y, w, h, 
r] 表示。其中，x 和 y 表示框的中心坐标，w 和 h 分

别表示框的宽度和高度，r 表示旋转角度。

为了精确衡量旋转边界框的形状差异，Prob IoU
损失首先计算每个边界框的协方差矩阵。协方差矩阵

的计算同时考虑了宽度 w 和高度 h 的标准差，并结

合旋转角度 r 的影响。具体而言，协方差矩阵的 3 个

分量 a、b、c 计算公式如式（1）~（3）所示。

                 ，                （1）

                 ，                （2）

                 。                 （3）

式（1）~（3）中： 。

接 着，Prob IoU 损 失 通 过 计 算 巴 氏 系 数

（Bhattacharyya coefficient，BC）来获取预测框和真

实框高斯分布的相似度，计算式如式（4）~（7）所示。

   ，（4）

          ，    （5）

    ， （6）

                        。                       （7）

式（4）~（7）中：ai、bi 和 ci 分别为预测框和真实

框的协方差矩阵分量；ε为一个极小数，用于避免除

以零的情况。

最 后， 通 过 引 入 豪 斯 多 夫 距 离（Hausdorff 
distance，HD）缩小两个高斯分布间的差异，得到最

终的 Prob IoU 损失。其计算式如式（8）（9）所示。

                     ，                    （8）

                      。                     （9）

2 本文改进算法

YOLOv8-OBB 算法在目标检测领域展现出较高

的检测精度，但是在处理条码旋转任务时，由于条码

倾斜和被机械臂遮挡等复杂情况，经常发生条码边

缘无法被准确识别的情况。因此，本文在 YOLOv8-
OBB 的基础上，在主干网络中使用 GhostConv[14] 模块

替换原有的 Conv 模块，在颈部网络中使用 CCFM[15]

特征融合网络，同时使用 CARAFE[16] 特征上采样替

换原有的上采样方法，最后在网络的 C2f 结构中引入

Star 模块 [17]。改进的算法网络结构如图 3 所示。 

2.1 GhostConv 模块

GhostConv 是一种轻量级卷积模块，由华为诺亚

b）旋转检测框

图 2 水平检测框和旋转检测框对比

Fig. 2 Comparison between horizontal detection boxes and 
rotation detection boxes

a）水平检测框

图 3 改进 YOLOv8-OBB 网络结构

Fig. 3 Network structure of improved YOLOv8-OBB
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方舟实验室在 GhostNet 网络架构中首次提出。其主

要目的是通过减少计算量和参数量，实现模型的轻量

化。借助高效的特征生成方法，GhostConv 能够以较

少的资源模拟传统卷积的效果。其结构图如图 4所示。

 

在传统的卷积中，每个卷积层需计算一组完整的

卷积核，这些卷积核会生成大量特征图，其中许多特

征是冗余的，这种计算方法会浪费计算资源来生成

冗余特征。GhostConv 则通过首先获取少量的基础特

征，再利用简单的线性变换去得到接近真实的特征，

有效降低了计算量。其执行流程包括两个阶段：首先，

通过较小的标准卷积生成初始特征集（主特征）；随

后，对主特征进行简单的线性变换或采用更小的卷积

核生成额外特征，以弥补主特征的不足。通过这一策

略，GhostConv 在生成接近标准卷积特征集的同时，

显著减少参数和计算量。

2.2 C2f-Start 模块

当前，大多数主流模型都是基于融合线性投影

（卷积层和线性层）与非线性激活函数的模块。微软

提出了一种新的学习范式，通过元素级乘法融合不同

子空间的特征，称为“星操作”。研究表明，星操作

能够将输入映射到高维非线性特征空间。具体而言，

星操作通过逐元素乘法生成一个新的特征空间，该空

间包含多个线性独立维度。随着多层堆叠，星操作能

在紧凑的特征空间中实现指数级维度增长，并在短短

几层内接近无限维度扩展。

Star 模块执行流程如下：首先，通过一个 7×7
的深度可分离卷积模块提取特征，在减少计算量的同

时保留特征信息。然后，使用两个 1×1 的卷积层生

成两个不同的映射（X1 和 X2），通过扩展通道数提

升特征表示的维度。接着，对X1应用ReLU6激活函数，

并与 X2 进行逐元素相乘。随后，通过一个 1×1 的卷

积层恢复通道维度，并通过深度可分离卷积模块进一

步提取特征。最后，将原始输入与处理后的特征图相

加，形成跳跃连接，在促进信息流传递的同时缓解训

练过程中的梯度消失问题。

本文对 C2f 模块中的 Bottleneck 模块进行改进，

将其中的 Conv 模块均替换为 Star 模块，最后构建了

C2f-Star 模块，其结构如图 5 所示。通过将 YOLOv8
网络结构中的 C2f 模块替换为 C2f-Star 模块，模型的

特征提取能力得到了显著提升。此外，由于 Star 模
块的参数量较少，该项改进有效降低了 YOLOv8 网

络的总体参数量，既增强了检测性能，又实现了轻量

化设计目标。

2.3 CCFM 特征融合网络

YOLOv8 的 Neck 模块负责特征融合，通过结合

底层的位置信息和高层的语义信息，提升了对不同大

小和形状物体的检测能力。通过这种方式，Neck 模

块不仅能够精确地捕捉到物体的空间位置，还能有效

理解物体的上下文语义，从而在复杂场景中提供更准

确的检测结果。特征融合机制使得 YOLOv8 在面对

尺度变化和形状多样的物体时，能够保持较高的识别

精度和鲁棒性。

本文采用 RT-DETR 中的跨尺度特征融合模块

CCFM 替换原有的 PANet[18] 网络结构。CCFM 通过

融合不同尺度的特征，增强了模型对于尺度变化的适

应性，并提高了对小尺度物体的检测能力。该模块

能够有效整合细节特征和上下文信息，从而提升模

型的整体性能。同时，CCFM 利用轻量级卷积操作

实现跨尺度特征融合，在保持较高检测能力的同时，

减少了模型参数量。

2.4 CARAFE 模块

在计算机视觉任务中，特征图的上采样是恢复空

间分辨率的关键步骤。传统的上采样方法，如最近邻

插值和双线性插值，虽然在某些任务中能产生有效结

果，但通常会导致边界模糊和图像结构不自然。相

比之下，CARAFE 上采样通过内容感知的方式生成

目标特征图，直接基于输入特征图的内容生成像素，

显著减少了传统方法中的模糊效应。CARAFE 上采

样过程如图 6 所示。

图 4 GhostConv 结构示意图

Fig. 4 GhostConv structure module

图 5 C2f-Star 模块

Fig. 5 C2f-Star module
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CARAFE 模块的执行流程如下：首先，输入特

征图通过卷积操作进行通道压缩，随后通过卷积生成

加权矩阵。接着，将加权矩阵的通道信息重新分配到

空间维度，并通过 Softmax 函数生成归一化权重。随

后，对输入 x 进行常规上采样，并对每个输出位置提

取其局部区域，将每个位置展开为 25 维通道信息。

最后，使用加权矩阵对局部特征图进行加权求和，得

到最终的上采样结果。

 

CARAFE 通过动态生成权重矩阵，能够更有效

地保留细节并避免模糊现象，从而显著改善了传统方

法中的信息丢失问题。这种方法特别适用于需要精细

恢复空间分辨率的任务，其能够提供更加细腻的上采

样效果。

3 实验结果与分析

3.1 实验环境与参数配置

本文实验环境为 Intel(R) Xeon(R) Platinum 8255C 
CPU@ 2.60GHz，90 GB 内 存，NVIDIA GeForce RTX 
3090，24 GB 显存，编程语言为 Python3.8(ubuntu20.04)，
深度学习框架为 Pytorch1.10.0，基准模型为 YOLOv8 旋

转框检测的轻量化版本 YOLOv8n-OBB。训练参数设置

如表 1 所示。

3.2 数据集

本文在流水线运行过程中采集了真实的试管条

码图像，并对收集的图像进行数据增强，提高数据集

的多样性。为了更好地模拟真实情景中的不同拍摄条

件，采用了 3 种数据增强方法：亮度调整、对比度调

整和加噪声处理，以模拟光照变化或镜头污损等真实

情况。最后，使用 X-Anylabelimg 标注软件对扩增后

的数据集进行标注。最终，训练集、验证集、测试集

分别包含 2 100, 700, 700 张图像。数据集示例图像如

图 7 所示。

3.3 评价指标

课题组采用了常用的目标检测评价指标，包括精

确率 P（precision）、召回率 R（recall）、平均精度

均值（mean average precision，mAP）、参数量和浮

点运算量（giga floating point operations per second，
GFLOPs），具体表达式见式（10）~（12）。其中，

TP 表示正确预测为正样本的数量，FP 为错误预测为

正样本的数量，FN 表示错误预测为负样本的数量，

即漏检样本数。AP 为 Precision-Recall 曲线下的面

积，通过插值计算得到；mAP 表示所有类别的 AP 均

值，mAP@50 为所有类别在阈值 0.50 下的平均 AP，
mAP@75 为所有类别在阈值 0.75 下的平均 AP，是相

对 mAP@50 更严格的指标；mAP@50-95 则是模型在

IoU 阈值为 0.5~0.95 的平均精度；N 为总类别项目。

FLOPs 表示每秒执行的浮点运算量，通常用于衡量模

型的计算复杂度。

                        ，                         （10）

                        ，                         （11）

                      。                      （12）

3.4 消融实验结果分析

为了证明本文提出模型每一步改进的有效性，

本文对各个改进模块进行了消融实验，得到的消融

实验结果如表 2 所示。由表 2 中的结果可以得知，

每种改进均在一定程度上提高了模型的检测性能。

使用 GhostConv 替换 Conv 模块后，模型通过更高效

的特征生成方法，在减少 6% 参数的同时，提升了各

项指标，其中 R 和 mAP@75 分别提升了约 1.3% 和

图 6 CARAFE 上采样模块

Fig. 6 CARAFE upsampling module

表 1 参数设置

Table 1 Parameter settings

参数 设置值 参数 设置值

Optimizer SGD lrf 0.01

epochs 150 weight_decay 0.000 5

batch_size 16 close_mosaic 10

num_workers 8 momentum 0.937

img_size/ 像素 640*480 ratio 0.75

图 7 数据集部分图像示例

Fig. 7 Sample images from the dataset
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1.9%，同时模型复杂度 FLOPs 降低了约 4.8%，证明

了该项改进的有效性。替换 C2f 模块为 C2f-Star 之
后，模型的检测性能大幅提升，特别是 mAP@75 和

mAP@50-95 分别提高了约 4.3% 和 4.1%，表明星操

作在进一步提升模型特征提取能力方面作用显著。

在采用 CCFM 和 CARAFE 组合特征融合网络后，模

型的 mAP@50、mAP@75 和 mAP@50-95 分别提高了

1.3%, 2.2%, 5.2%，同时模型参数量减少了约 95 万，

复杂度降低了约 16.4%，证明组合特征融合网络的有

效性。通过使用 CARAFE 上采样方式，模型动态感

知获取更精细的特征表示，边界更加清晰，准确率 P
提高了约 0.8%。

表 2 消融实验结果

Table 2 Ablation experiment results

Model P/% R/% mAP@50/% mAP@75/% mAP@50-95/% FLOPs /109 参数量 /106

V8 96.0 96.6 97.0 87.9 78.0 8.3 3.08

V8-GhostConv 96.8 97.9 97.9 89.8 78.5 7.9 2.89

V8-C2f_Star 96.8 98.3 98.7 92.2 82.1 7.5 2.67

V8-GhostConv-CCFM 97.5 96.1 98.3 92.8 81.8 6.4 1.81

V8-GhostConv-CCFM-CARAFE 98.3 98.8 99.2 92.0 83.7 6.6 1.93

V8-GhostConv-CCFM-CARAFE-C2f_Star 98.8 98.7 99.4 93.0 84.6 6.0 1.70

表 2 的实验结果表明，4 种改进机制均优化了算

法性能。GhostConv 和 C2f-Star 分别通过高效特征

生成和星操作增强了模型特征提取能力；CCFM 和

CARAFE组合的特征融合网络通过高效的特征融合，

提高了模型在多尺度特征融合和上采样方面的能力。

与基准算法相比，改进算法在数据集上的 P、R、
mAP@50、mAP@75 和 mAP@50-95 分别提高了 2.8%, 
2.1%, 2.4%, 5.1%, 6.6%。此外，4 种改进机制均具有

轻量化特点，模型参数量减少了约 137 万，模型复

杂度 FLOPs 降低了 27.7%，最终的模型大小仅有 3.7 
MB。结果表明，改进算法在试管条码场景中表现良

好，证明了改进算法的有效性。

3.5 与其他算法对比实验

为了进一步验证改进算法的有效性，本文在自

制数据集上，将本文算法与 YOLOv5、YOLOv6[19]、

YOLOv8、YOLOv9[20]、YOLOv10[21]、YOLO11 算法在

相同条件下进行实验对比，所得对比结果如表 3所示。

表 3 不同算法实验结果对比

Table 3 Comparison of experimental results of different algorithms

Model P/% R/% mAP@50/% mAP@75/% mAP@50-95/% FLOPs /109 参数量 /106

YOLOv5 95.9 89.7 95.2 92.1 81.8 07.3 2.58

YOLOv6 97.4 96.7 97.1 91.9 80.5 11.8 4.25

YOLOv8n 96.0 96.6 97.0 87.9 78.0 08.3 3.08

YOLOv9t 95.6 93.8 96.9 91.0 83.0 07.8 2.02

YOLOv10n 95.6 95.3 97.1 86.9 74.5 08.0 2.66

YOLO11n 95.5 96.6 98.1 91.8 82.3 06.6 2.65

本文算法 98.8 98.7 99.4 93.0 84.6 06.0 1.71

由表 3 可知，本文提出的改进算法在多个指标上

表现优异。尤其在检测精度方面，改进算法的 P、R
分别达到了 98.8% 和 98.7%，显著高于其他模型。与

最新的 YOLO11 算法相比，P、R 分别高出 3.3% 和

2.1%。此外，本文算法的算法复杂度 FLOPs 值为 6.0，
参数量为 1.71×106，均低于其他算法，进一步证明

了改进算法在保持高性能的同时，具备轻量化的优势。

综上，本文提出的改进算法在自制数据集上多个

指标上都超越了现有的 YOLO 系列算法，特别在准

确率和检测性能方面表现尤为突出。同时，本文算法

具有较低的模型复杂度和参数量，可以更好地部署在

嵌入式设备中。

3.6 可视化对比检测

为了更直观地呈现改进算法的优异性，选取了部

分具有代表性的图像检测结果进行对比，结果如图 8
所示。其中最左列为数据集中的原始图像，右侧两列

分别为基准算法和改进算法的检测结果。从图中可以

观察到，YOLOv8 算法在识别条码区域时，未能清

晰地识别条码边缘，出现了预测框超出条码边缘或未

完全覆盖条码边缘的情况。而改进算法无论是在原始

图像上，还是在经过光照、对比度变化和噪声增加等

数据增强后的图像上，均能准确地检测到试管条码，
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且预测框完全覆盖条码区域。此种情况下，准确的条

码定位为后续条码解码提供了良好的基础。检测结

果表明，改进算法在试管条码定位任务中表现优异，

能够满足条码定位的实际需求。

 

4 结语

本文构建了一种基于改进 YOLOv8 的旋转框检

测算法，可应用于全自动医疗流水线中试管条码的

定位检测。在骨干网络中，改进算法使用 GhostConv
模块替换传统的 Conv 模块，通过轻量化的设计实现

更高效的特征提取。在颈部网络中，结合 CCFM 网

络和 CARAFE 上采样以融合不同尺度的特征，通过

内容感知的方式去获取更精细的上采样特征。最后，

设计了 C2f-Star 模块替换原有的 C2f 模块，显著提升

了模型的特征提取能力。实验结果表明，在自制的数

据集上，改进算法相比 YOLOv8 旋转框算法展现了

更优的检测性能。在未来的研究中，可以通过模型剪

枝等优化方法进一步缩小计算量，并将该算法部署于

嵌入式设备。
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