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An Improved Yolov8-Based Algorithm for Test Tube Barcode Rotation Target Detection
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(1. School of Bidogical Science and Medical Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China;
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Abstract: A test tube barcode rotation box detection algorithm has been proposed based on improved YOLOv8
in view of the flaw of traditional detection algorithms being difficult to accurately locate the barcode area brought about
by the inclined angle of barcode pasting on the surface of the test tube and the obstruction of the gripper during the pre-
processing stage of the fully automated assembly line. Firstly, GhostConv is adopted to replace the Conv module in the
backbone network, thus achieving feature representation similar to traditional convolution while significantly reducing
computational complexity through efficient feature generation methods. Next, the Star module is introduced into the
C2f module for an enhancement of the feature extraction capability of the model through high-dimensional nonlinear
feature mapping. Meanwhile, the neck network is to be replaced with a CCFM feature fusion network, further reducing
computational complexity. Finally, the CARAFE sampling method is introduced to improve the blurring effect brought
about by traditional sampling methods. The experimental results show that the improved model is characterized with a high
accuracy and recall on self-made datasets mAP@50-95, achieving an increase of 2.8%, 2.1%, and 6.6% respectively, while
reducing the model complexity by 27.7%, thus enabling precise positioning of test tube barcodes in real-world scenarios.
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Fig. 1 Network structure of YOLOvV8
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Fig. 7 Sample images from the dataset
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Table 2 Ablation experiment results

Model P/% RI% mAP@50/%  mAP@75/%  mAP@50-95/% FLOPs/10° &% /10°
V8 96.0 96.6 97.0 87.9 78.0 8.3 3.08
V8-GhostCony 9.8 97.9 97.9 89.8 78.5 7.9 2.89
V8-C2f Star 96.8 98.3 98.7 922 82.1 75 2.67
V8-GhostConv-CCFM 97.5 96.1 98.3 92.8 81.8 6.4 1.81
V8-GhostConv-CCFM-CARAFE 98.3 98.8 99.2 92.0 83.7 6.6 1.93
V8-GhostConv-CCFM-CARAFE-C2f _Star 98.8 98.7 99.4 93.0 84.6 6.0 1.70
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Table 3 Comparison of experimental results of different algorithms

Model P/% R/% mAP@50/% mAP@75/%  mAP@50-95/%  FLOPs /10° BRI /10°
YOLOV5 95.9 89.7 95.2 92.1 81.8 73 2.58
YOLOV6 97.4 96.7 97.1 91.9 80.5 11.8 4.25
YOLOv8n 96.0 96.6 97.0 87.9 78.0 8.3 3.08
YOLOV9t 95.6 93.8 96.9 91.0 83.0 7.8 2.02
YOLOV10n 95.6 95.3 97.1 86.9 74.5 8.0 2.66
YOLO11n 95.5 96.6 98.1 91.8 82.3 6.6 2.65
ENE RN 98.8 98.7 99.4 93.0 84.6 6.0 1.71
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Fig. 8 Comparison of detection results
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