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A Tumor Drug-Resistant Cell Identification Method Based on Transfer Learning

HUANG Junfeng', PENG Lihong’

(1. School of Biological Science and Medical Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China;
2. School of Computer Science and Artificial Intelligence, Hunan University of Technology, Zhuzhou Hunan 412007, China )

Abstract: In view of the flaw that tumor heterogeneity causes patients to respond differently to the same drug
therapy, thus leading to tumor relapse or metastasis, a tumor drug-resistant cell recognition method GCDrug has been
proposed based on graph structure and unsupervised domain adaptation. Firstly, similarity maps are to be constructed
between source domain (batch transcriptome sequencing) and target domain (single-cell transcriptome sequencing)
samples based on k-nearest neighbors, thus extracting features using graph convolutional networks. Subsequently,
Deep CORAL loss is introduced to achieve cross-domain distribution adaptation. Experimental results on 10 single-cell
drug-annotated datasets demonstrate that GCDrug outperforms current mainstream methods across three classification
metrics. Notably, on the Etoposide dataset, GCDrug achieves an F-score of 0.956, significantly outperforming existing
methods. Ablation experiments further verify that the synergistic effect of the graph structure module and the domain
adaptation module helps to improve the discriminative performance and generalization ability of the model. The
experimental results indicate that the proposed method can accurately identify drug-resistant individual cells in tumors.
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Table 1 Detailed information of single-cell

drug-response datasets
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Etoposide ~ GSE149215  PC9 2668 it
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Fig. 1 Flow chart of similar graph structure construction
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Fig.2 GCDrug model training process diagram
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Table 2 Classification F-score results of GCDrug and
four baseline methods

Tk
EiL/ES
SSDA4Drug SCAD scDEAL CODEAE GCDrug
Afatinib 0.766 0.732 0.416 0.847 0.878
AR-42 0.775 0.661 0.441 0.464 0.798

Cetuximab 0.765 0.709 0.406 0.828 0.867
Etoposide 0.204 0.434 0.477 0.109 0.956

Gefitinib 0.903 0.807 0.540 0.937 0.899
NVP-TAE684 0.746 0.476 0.633 0.746 0.876
PLX4720' 0.829 0.705 0.482 0.059 0.847
PLX4720° 0.848 0.400 0.409 0.099 0.782
Sorafenib 0.723 0.393 0.698 0.341 0.880

Vorinostat 0.723 0.596 0.438 0.499 0.778
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Fig. 3 Comparative experimental results
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Table 3  F;-score results of GCDrug ablation study

2%

GCDrug ( Deep CORAL) GCDrug (KNN) GCDrug

Afatinib 0.854 0.822 0.878
AR-42 0.783 0.775 0.798
Cetuximab 0.834 0.828 0.867
Etoposide 0.906 0.883 0.956
Gefitinib 0.856 0.837 0.899
NVP-TAE684 0.843 0.826 0.876
PLX4720' 0.821 0.815 0.847
PLX4720° 0.725 0.757 0.782
Sorafenib 0.835 0.852 0.880
Vorinostat 0.751 0.708 0.778

3R 3 R SEH 45 R, X GCDrug ( Deep
CORAL ) Y GCDrug R, 7£ Etoposide, Afatinib,
Cetuximab S5 4E [, I ARIZHIG M F, 70 50E
THT 1.9%~7.9%, Bt KNN R B R 251 g
R BEREAS ] AR, 0 i B At R A fle )i
Xttt GCDrug (KNN) 5 GCDrug A A1, il A Deep
CORAL #iK 5, FrABdRErEaeRR5ET:, 11y
WIS Z9M 2.1%, #x ik 8.3% ( Etoposide ) , X
ASC RS IV vk AT I 2 R A A H ARz 1k
REJ1. &5 BRIk, AUOREA B, JLSEgPERESY
TSR . AL, A SR R IR AE [RI 4
1471 Deep CORAL Hiih W AHZS A5 IE AT, 7E R
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