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An Improved Deconvolution-Based Beamforming Method for

Sound Source Localization

WU Shengquan, SUN Xiao
( School of Mechanical Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China )

Abstract: In view of the flaws of prolonged computation time and limited resolution in traditional deconvolution
algorithms during practical applications, an improved beamforming algorithm—DAMAS2-GFISTA—has thus been
proposed, which incorporates momentum restart and adaptive strategies. The effectiveness and applicability of the
proposed algorithm can be verified based on numerical simulations and comparative measurements conducted in
both single-source and dual-source scenarios. The simulation results show that the proposed algorithm can achieve
clearer sound source separation and imaging reconstruction with sound sources in close proximity or in the presence
of coherent interference. The main lobe width is compressed by about 70% compared to CBF. Furthermore, under
the same number of iterations, the computational speed is increased by about 1.64 times and 1.37 times respectively
compared to DAMAS2 method in the single and double sound source experiments, exhibiting an enhanced stability and
computational efficiency in complex scenarios with multiple sound sources. In practical experiments, whether under
single or dual sound source conditions, the proposed method is characterized with excellent positioning accuracy and

energy focusing effect, so as to obtain clearer and more accurate sound source images in a shorter calculation time, thus
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verifying its practicality and superior performance in complex sound field environments.

Keywords: beamforming; deconvolution algorithm; rapid iterative shrinkage-threshold; sound source

imaging; momentum restart
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Fig. 1 Schematic diagram of beamforming methodology
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Fig. 2 Schematic diagram of the microphone array
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Fig. 3 Simulation result diagram of single sound source under different deconvolution algorithms
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Table 1 Computing time and standard deviation of single
sound source of different deconvolution algorithms with

the same number of iterations

Bk AU FF ] /s brifE2z /s
CBF - 0.26 0.01
DAMAS 50 33.57 1.68
FFT-NNLS 50 4.65 0.24
FFT-FISTA 50 4.32 0.23
DAMAS2 50 4.04 0.16
This work 50 0.88 0.03
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Fig. 4 Simulation results of dual sound sources under different deconvolution algorithms
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Table 2 Computing time and standard deviation of dual sound
source of different deconvolution algorithms with

the same number of iterations

"ok PARUEL B /s FrifE2E /s
CBF - 0.19 0.008
DAMAS 50 59.30 2.960
FFT-NNLS 50 4.65 0.230
FFT-FISTA 50 431 0.220
DAMAS2 50 1.95 0.078
This work 50 1.65 0.058

4 SCEEMK

4.1 SEINEE

T 2 VPl BT R S AR SEBR I A AL
PES G, AT 5T AR AT SE I g E
SeEg et T E A WX, DU AT R TR e S i
B XM S SR T4 SEg iR B S Ay L —
B, S AN B RS SRR RS
PIZH S0 YR R e a0, 40 A B T IR A2
v RUES1) 3 m Ak 9 T A7 B T ol R 1) 22 e XU 1)
FH 64 MG IRASAE BLATIR T LS # , HAT R ARy 2S ]
FFERE ST AR R 2mx 2 m, RS
N 192 kHz, DAPRUERT S0 5 0 7850l 4 . S0
Tob R R AR B B S A F A S I O S R B R
7% ({5 CBF. DAMAS. FFT-NNLS. FFT-FISTA
DAMAS2 538 ) AT AR5 14

W A LA B R AR B, 50 RIS T
BT, AT A RENRIZ IR RS X AR 25 R r s
FiA SRR S 40t T 8RR, 500 Hz 1) &5 8
WAL PR, 5 275 R A 25 SR 38 LAAH X F 04 7 T
% -6 dB MR T R, IEASREA R0 B A IR
FEANHIES SR R RS T4 BUREE RS — R
e KA R 2 6 dB (WS (E T E 1 T W s, LA
T S B TP o 38 A X 45 A A S PRl £ 25 1
IR SNSRI I RE 1 LA S
EFERT SRR T IO, HE— IR TR A

PRUER 2 Rl B p FET, BB Isios e 511
SEVERE, PRI A AR LS A A T 1Y R 3
5 TR E.
42 HHEIREX

iy ik — 5 B BT R S AR S PR R 3 vh i 3
Sk, AWRIL T R4 SR R,
VTR LA YRS AR TS IR TR R T, B A
SIS, RN 3 kHz ) U B TR
A X, P R 22 S KRS 22 0] R 2 Z=3
m. SCHRFR, R A IR R R AR I I LA
FURIEA TRl TR, NI SE B = A B S b
ATk

Ry it — VA SRR AR A T R 5 T B L
J1, WEAGHIRSII A, WA IR AR K AR R
4 kHz WIAH[EIE S, W x B malbs | m 35040 &,
AR T /RS Z=3 m b, HASLE 454 15 s
TRIETE R —E, [FREANEEH . R E UGS
WO, L E R E LA S,

a) PRSI A E b)) X PRI A
Bs5s XBEREBRETEE
Fig5 Experimental setup schematic diagram

43 HREITE

P 6 S B s R IR 6 M L5 SR A SRR HE
HiE A A, 185 CBF 50 0 M 98 . 25 AW
B, ENAERER 2 FFTNNLS B4R T FMa0hE
R, HPERUGE A R FFT-FISTA 593451
A RNNGE, TR SRR AT T S A
DAMAS2 5575 S2 B 1 S L 32 0 T 45 0 55 4 1]
EHHRE AL PRI R . A ik (&
6f ) L5 P PR A FIG A, TERFFIEREIL MY
Rt BT T HERCR

a) CBF &:

b) DAMAS &k

¢) FFT-NNLS %



RIERL, 25 BTGRPSO A I (5 5 23

d) FFT-FISRTA .

¢) DAMAS?2 &k

f) DAMAS2-GFISTA &k

6 ARREREEMAFFRIERERE

Fig. 6 Experimental results of the single sound source localization under different deconvolution algorithms

3G T 6 FARITET S g ik A,
[HESEIN]: 5=

*3 BEEBEABEELBRAEKEESREE
Table 3 Experimental iteration time and standard deviation of

different algorithms using a single-source source

"% AU ] /s BRI /s
CBF - 0.42 0.021
DAMAS 50 58.34 3.500
FFT-NNLS 50 3.44 0.210
FFT-FISTA 50 3.11 0.190
DAMAS?2 50 2.89 0.140
This work 50 1.76 0.070
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Fig. 7 Experimental results of dual sound source separation performance under different deconvolution algorithms
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Table 4 Experimental iteration time and standard deviation of

different algorithms for dual-source scenarios

Bk PEARYEL B /s FrifE2e /s
CBF - 0.42 0.021
DAMAS 50 57.50 3.450
FFT-NNLS 50 3.63 0.240
FFT-FISTA 50 3.26 0.230
DAMAS2 50 3.11 0.160
This work 50 2.26 0.095
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