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Reliability Analysis of the Motion Accuracy of Folding Wing Mechanism Considering
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Abstract: A reliability analysis method using adaptive Kriging with a parallel point strategy has been proposed to
address the impact vibration problem caused by the clearance between motion pairs. Firstly, a hinge clearance collision
model is established based on the L-N model and an improved Coulomb model, with a mechanism dynamics model
constructed by using the Lagrange method. By introducing the influence function (IF) and pseudo learning function
(PH), parallel selection of multiple training points in each iteration has been achieved, significantly improving modeling
efficiency. A numerical simulation analysis has been made of the influence of gap value, material elastic modulus, and
friction coefficient on the reliability of diagonal displacement error. The results demonstrate that, compared to traditional
methods, the proposed approach significantly enhances computational efficiency while ensuring accuracy, providing
effective theoretical support for the reliability design of folding wing mechanisms.
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Table 3 Random variable parameter distribution

Bt b1 2% ¥ P2z S3A IR
[a] B ¢,/mm 0.1 0.002 1IEA
[A] B ¢,/mm 0.1 0.002 EA
PR /GPa 73 1 A

FEHREIR%L 0.15 0.01 IE2

AT, FEATIS RN, 2 B AR
UECHRCE, PIASIE T N=1, 2, 4, 6, 8 365 Fil
L, 4 N=10F, AR T RS, R HAE N



o 434

BORE, % BEaadR BT S R LIS SR R TSR A 15

SRS . BRI, AR N, IR TN
BN, AL R e BDC R, ik (43) PR
N,=(N.=N,)/N, +1o (43)

Kb NONEESERREG N, IRIIRFEARG N
R BRAR S R S I FH R

ZZ PRI, RECETE FHRE N, X P It
TTMEE N, AU, Dtk TRk AR SR
N5 N, ZI AR R LK R & 10 J 7R T 1N,
Bl N, ek, AHRTE S, Y N,z 8 i,
N TRREC BT, JEERAATEE. 25
BRI GRCRIETH A, A SCEBCE N, I
fHIEHN 4~6, LIPRUEFFA TR AR B [R1A 3k 4 PR A
Bt 22 800 TR S I a5 3 9

2.0

1.5F

0.5

0 p) 4 6 8 10
N

B 10 1/N, B N, B9ZE4L ik
Fig. 10  Curves of 1/N, versus N,

K AP TIELG SR B (MCS) fikF
AN AEE N, TS 00T B R BRI AE R, Horp
1 MCS I3 HRAF B A AE R R i i o T T3

R4 REMETHEER

Table 4 Failure probability calculation results
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