5540 4 5 2 ) L7/ R N /A N O S Vol.40 No.2
2026 43 H Journal of Hunan University of Technology Mar. 2025

DOI: 10.20271/j.cnki.1673-9833.2026.2006

MEAULRIZE R L RSN
2SR 2 X

WmFEE, XEE, EZME, FHTE
G Tl k2 A8 S TREERE, WIm Bk 412007)

OB ARSEXT R BARTREMRAEGRAIZEFRREGRRGPE, RET Ry Z248
ERZRORRIE R R, Bk, B ARFERNERRY ZRSAFREESR, RERE 1 FHE2H
THERAERBAERSZHEGK D, ARNRDZRAREIEFREGRB RS, RSZEGHEITH
FosT e, ok, APATINE @ OF Mk A2 ik E B AR R AAKAY P, A INE B T ads k) Kk, 3Rk —
Fh# A AARIRTAR F 42 Kk, Bpfid X B e b E R B AR A W W R KB K2 18] 69 B B AR A4
ZBATAME, St H BT —AH e F WA BT &, B T 43R (PLL) A3 5 R1E (RMS) 37¥, ARE
ZIAPIATE, R TENLAK, RETARATHREFHFE, FATH/FRNFFEHE, w5, @i
Matlab/Simulink 47 & Fe ¥ E 445 A, BiE T BTt 5 sk o B4,

KEBIE: EMEF R A, ZRAM; RS ABMR; SRR

hESES: TP273 XEAARERE: A XEHRS: 1673-9833(2026)02-0044-09

SIXH&K: M AH, T4, ZRE, F . EMEF L LA E = RFRF LA TARE F 424 [1]. 4
B Tk KPR, 2026, 40(2): 44-52.

Novel Secondary Frequency Modulation and Phase-Locked Loop-Free

Pre-Synchronization Control for Virtual Synchronous Generators

YANG Xiuhai, WEN Dingdou, MENG Yuwei, ZHONG Ding’ ai
( School of Transportation and Electrical Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China )

Abstract: In view of the frequency offset error and large oscillation of microgrids in secondary frequency
regulation under islanding mode, an integral coefficient adaptive secondary frequency regulation control strategy with
integral coefficient has thus been proposed. Firstly, the integration coefficient is divided into two stages of control
through the angular frequency change rate, with the size of the integration coefficient adaptively adjusted according
to the requirements of the two stage changes, so as to reduce frequency offset and oscillation during the secondary
frequency modulation process, thus improving the stability and reliability of the system. Secondly, in view of the low
speed and accuracy in the switching process from islanding to grid connection, a new phase-locked-loop-free pre-
synchronization control strategy is to be proposed based on the control strategy in islanding mode. A compensation
can be achieved by replacing the distance between the end of the voltage vector output by the inverter and the end of
the grid voltage vector instead of the phase difference, with a new grid connection judgment condition proposed, thus
eliminating the phase-locked loop (PLL) and root mean square value (RMS) links with the requirement of only one

PI regulator, reducing control parameters, improving the speed and accuracy of pre synchronization, and achieving a
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smooth switching between off grid and grid connection. Finally, the accuracy of the proposed method can be verified by

Matlab/Simulink simulation and semi-physical simulation.

Keywords: virtual synchronous generator; secondary frequency modulation; pre-synchronization; non-phase-

locked loop; smooth switching
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