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Sensorless Control of Induction Motor Based on Improved Non-Singular Fast

Terminal Sliding Mode Observer

XIAO Taolie, WU Wei
( School of Transportation and Electrical Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China )

Abstract: In order to address the problem of the magnetic flux voltage model in the model reference adaptive
(MRAS) sensorless control method, which is susceptible to internal parameters and external disturbances of the motor,
a sensorless control method for induction motors has thus been proposed based on an improved non-singular fast
terminal sliding mode magnetic flux observer. Firstly, based on an improved non-singular fast terminal sliding mode,
a voltage model magnetic flux observer is proposed, which enables the system to converge globally and quickly with
reduced chattering, while effectively enhancing the robustness of the system. Secondly, a DC component compensator
based on the orthogonality between back electromotive force and magnetic flux is designed to suppress the integration
drift problem brought about by pure integration in the stator magnetic flux observation process, further improving the
accuracy of magnetic flux estimation. Finally, simulation and experiments have shown that the proposed strategy can
effectively improve the robustness of the system and reduce the integral drift problem caused by DC bias, thus verifying
the effectiveness of the proposed method.
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