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摘　要：为准确预测电力负荷对优化发电和调度计划的影响，提升经济效益，保障电网安全运行，提出

一种基于体感温度和改进菲克定律算法（improved Fick’s law algorithm，IFLA）优化 CNN-BiLSTM 的短期

电力负荷预测模型。采用 Logistic 映射、柯西 - 高斯变异策略、螺旋波动搜索等改进 FLA。首先用体感温度

公式对气象数据进行特征增强处理，其次通过 IFLA 对 CNN-BiLSTM 网络进行超参数优化，最后由 CNN-
BiLSTM 对数据进行特征提取并输出负荷预测结果。通过对 2022 年 3 月湖南某地居民用电负荷数据集进行

仿真实验，实验结果表明，IFLA-CNN-BiLSTM 预测模型输出的均方根误差为 1.305、平均绝对误差为 0.882、

平均绝对百分数误差为 2.558%、决定系数分别为 0.989，验证了该模型在实际应用环境下的泛化性及可靠性。
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Short-Term Power Load Forecasting Based on Perceived Temperature and 
IFLA Optimized CNN-BiLSTM
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Abstract：In view of an accurate prediction of the impact of power load on optimizing power generation and 
scheduling plans, as well as an improvement of economic efficiency, so as to ensure safe operation of the power grid, a 
short-term power load forecasting model has thus been proposed based on perceived temperature and improved Fick’s 
law algorithm (IFLA) optimized CNN BiLSTM. Logistic mapping, Cauchy Gaussian mutation strategy, spiral wave 
search, and other techniques are used to improve FLA. Firstly, the features of meteorological data are amplified by 
adopting the somatosensory temperature formula. Secondly, the CNN BiLSTM network is subjected to hyperparameter 
optimization using IFLA. Finally, the CNN BiLSTM performs feature extraction on the data and outputs prediction 
results. On the basis of simulation experiments on the residential load dataset of a certain location in Hunan Province 
in March 2022, the experimental results show that the IFLA-CNN BiLSTM prediction model outputs root mean square 
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error, average absolute error, average absolute percentage error, and coefficient of determination of 1.305, 0.882, 2.558%, 
and 0.989, respectively, verifying the generalization and reliability of the IFLA-CNN-BiLSTM model in practical 
environmental applications.

Keywords：short-term power load forecasting；perceived temperature；improved Fick’s law algorithm

1 研究背景

电力系统短期负荷预测技术作为有效管理电力

系统稳定运营与市场交易而发展起来的关键技术，具

有不可替代的重要性。精准的负荷预测能够助力电力

公司优化发电计划、合理调度设备，实现成本节约。

同时，它还为可再生能源的集成和运营提供有力支

持，确保电力系统的稳定运行。

当前科研人员广泛采用的负荷预测方法包括机

器学习方法 [1-7] 和统计学方法 [8-9]。两类方法在不同

预测时间尺度上各有优劣，适用性与精度也存在差

异。然而，传统组合算法在应对复杂负荷预测问题时

存在诸多不足，难以准确捕捉负荷数据中复杂的非线

性关系。在优化过程中易陷入局部最优解，无法全面、

综合地考虑各种影响因素。在处理多变量多约束条件

时，传统算法性能较差，缺乏灵活性，难以充分挖掘

数据中的潜在信息，导致预测结果的可靠性和稳定性

受到影响。同时，面对变化的环境和数据，其鲁棒性

较差，难以适应实际应用中的动态变化。

具体来看，不同文献提出的模型也存在各自的

局限性，如文献 [10] 提出了一种基于双向长短期记

忆神经网络（bidirectional long short term memory，
BiLSTM）的电力系统短期负荷预测模型，采用指

数加权移动平均法处理缺失值，但 LSTM 网络模型

部分仅考虑了一个隐藏层，限制了模型对复杂特征

的提取能力，从而影响预测精度。文献 [11] 提出一

种主成分分析（kernel principal component analysis，
KPCA）对高维数据进行降维处理，以方便提取其数

据内部特征，但缺少对负荷密度概率的考虑，可能导

致特征提取过程中丢失一些关键信息，影响预测的

准确性。文献 [12] 运用挤压激励网络（squeeze-and-
excitation networks，SENet）对 CNN 进行特征重校准，

进一步聚焦有效特征，但该模型未充分考虑不同特征

之间的关联性和相互作用，可能在处理复杂负荷数据

时存在一定局限性。文献 [13] 运用迁移学习方法将

CNN-GRU 的训练迭代学习结果迁移到目标域以提升

预测性能，但对于数量庞大且相关性较低的数据存在

一定的局限性。文献 [14] 提出 CNN-BiGRU-Attention
预测模型，BiGRU 网络弥补了 GRU 单向时间序列的

不足，但缺少对模型优化部分的算法，难以在短时间

内找到最优解，导致模型性能无法达到最佳状态。

引入寻优算法能高效搜索大规模解空间，找到全

局最优解或接近最优解的结果，具较强适应性，可

在不同场景和约束条件下应用，如花斑翠鸟优化算

法（pied kingfisher optimizer，PKO）[15]、菲克定律

优化算法（Fick’s law algorithm，FLA）[16]、麻雀搜

索算法（sparrow search algorithm，SSA）等，各具

独特优势。在实际应用中，这些算法已取得显著成

效，如文献 [17] 采用 SSA 对变分模态分解（variational 
mode decomposition，VMD）进行超参数寻优，并将

数据噪声分解为多个周期性分量以便更好地分析数据

特征，为负荷预测提供更准确的数据支持。文献 [18]
应用粒子群算法（particle swarm algorithm，PSO）对

VMD 中惩罚因子和分解尺度进行寻优，消除了主观

调参对预测精度的影响，提高了预测准确性和稳定性。

通过启发式方法，寻优算法能逃离局部最优

陷阱，提升解决复杂问题的能力。文献 [19] 采用

Logistic 映射对种群进行初始化以改进粒子群算法，

优化了算法初始解分布，提高了局部搜索能力，使算

法能更快地找更优解。受文献 [20] 探路者算法（PFA）

和文献 [21] 金枪鱼群优化算法（TSO）中螺旋觅食

和波动游走的启发，构建螺旋波动搜索策略，有效改

进了多路径搜索算法，提高了算法在复杂解空间中的

搜索效率。

综上，本文提出 IFLA-CNN-BiLSTM 短期电力

负荷预测模型。菲克定律优化算法（FLA）具有阶段

策略，能根据不同的环境条件自动调整搜索策略，

具有较强的泛化性。改进后 FLA 的搜索范围和能力

显著提高，能更加全面深入地搜索解空间，获得最

优 CNN-BiLSTM 超参数解。通过优化超参数，模型

性能进一步提升，有效提升预测精度，为电力系统短

期负荷预测提供更可靠、准确的解决方案。
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2 体感温度的计算公式

基于文献 [22] 提出的温度 - 降水关系指数，引

入一个指数，用以量化温度极值对降水的差异化影

响。两个关键指数 Rt(T75) 和 Rt(T25) 分别为温度高

于 75%（高温日）和低于 25%（低温日）时的降水

比例。关系指数 IRt 定义如下：

                          （1）

该指数反映了高温日与低温日之间的降水差异。如

果 IRt>0，表明降水在高温日较多，反之则在低温日

较多。

传统的体感温度模型，预测冷热感指标（predicted 
mean vote，PMV）[23] 计算公式为

      

式中：M 为人体代谢率；W 为人体所做机械功率；

Pa 为空气中水蒸气分压；Ta 为空气温度；fcl 为衣物

覆盖系数，反映衣物覆盖人体比例；Tcl 为衣物外表

面温度；Tr 为平均辐射温度，通常假设与 Ta 相等；

hc 为对流换热系数。

在此基础上，引入降水与温度关系指数作为修正

项，加入 PMV 计算中，以调整体感温度对不同天气

条件下的反应。调整后的 PMV 公式为

                                          （3）

式中：β为权重参数，用于调节降水与气温关系对体

感温度的影响。

通过这种方式，能够更好地反映不同气候条件下

人们对室内温度的热舒适需求。将历史降水数据、温

度数据与修正后的 PMV 模型相结合，可以分析降水

条件在不同温度条件下对体感温度的影响。特别是对

于降水频繁或存在极端气候条件的地区，此方法可以

更准确地预测人们的舒适度需求，从而为电力负荷预

测及室内温度调控系统的优化提供依据。

3 改进的菲克定律优化算法

3.1 菲克定律优化算法

菲克定律优化算法是一种基于物理的元启发式

算法，该优化算法基于菲克第一扩散定律。根据菲克

定律，分子倾向于从高浓度区域向低浓度区域扩散。

FLA 由扩散、平衡与稳态 3 个阶段组成，其扩散过

程见图 1。

第一阶段，初始存在两个区域，且两者间浓度差

异显著，促使分子由高浓度区向低浓度区迁移，称

相位扩散算子（DO）。如图 1 中两个区域，区域 1
为高浓度区，区域 2 为低浓度区，则依据菲克定律，

分子将从区域 1 移动到区域 2。
第二阶段，当扩散过程达到平衡时，系统内部不

再有浓度梯度。在这个阶段物质将不再发生净扩散，

且分子浓度分布均匀，称为平衡算子（EO）。

第三阶段，系统内浓度分布虽不均匀，但浓度梯

度与扩散通量不随时间变化，称稳态算子（SSO）。

3.2 优化过程

3.2.1 初始化

FLA 算法的优化过程从随机生成候选解集 X 开

始，如式（4）所示，每次迭代的最佳候选解都被认

为是当前最优解或近似最优解。

（4）

式中：N 为解的个数或种群规模；D 为问题维度或决

策变量个数；j 为第 j 个决策变量。

3.2.2 传递函数

  第一阶段到第三阶段间的转换是算法运行的核

心，最常用的传递函数为线性参数，但线性函数无法

从探索性行为转变为利用性行为。针对此问题，算法

采用非线性传递函数，并将其作为开放与探索间转换

的基础。该过程如下：

                       ，                     （5）
式中：t 为当前迭代次数；T 为总迭代次数；c1 为 0.5。
3.2.3 更新分子位置

FLA 算法中包含 3 个阶段的传输算子，分别是

DO、EO、SSO。三阶段之间的转换公式为

                            （6） 

图 1 扩散演示图

Fig. 1 Diffusion schematic diagram

（2）
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1）扩散算子（DO）（探索阶段）。初始两个区

域浓度差异较大，导致分子根据给定区域浓度从一个

区域移动到另一个区域，因此 FLA 引入参数 T t
DO，

算法公式如下：

                                    （7）

式中：rand 为 0~1 的随机数；C5 为 2。
根据 T t

DO 值确定流动方向，描述公式如下：

               （8）

假设 i 区域的浓度高于 j 区域，一些分子从 i 区
域移动到 j 区域，i 区域剩下的分子会受到相互作用

影响。从 i 区域到 j 区域的分子数为

                     （9）

式中：r1 为 0~1 的随机数；C3、C4 分别为 0.1 和 0.2。
停留在区域 i 上的分子数可由式（10）得到：

                                                 （10）

分子 NTij 将移向另一区域，其位置主要由 j 区域

的最佳平衡分子决定。

（11）

式中： 为第 t+1 次迭代，分子 p 在 i 区域上的更

新位置； 为 j区域的平衡位置； 为方向因子，

等于 {-1, 1}，该方向因子可随机变化，在给定搜索

区域内给予较高的扫描机会，并跳出局部最优；r2 为

0~1 的随机数； 为 i 区域和 j 区域之间的耦合或交

互项，即区域间的相互作用；DOF 为随时间变化的

流动方向，可由式（12）得到

                              （12）

式中 C2=2。
仍处于 i 区域中的分子 NRi 根据不同的 3 个阶段

导航更新其位置：1）区域 i 的平衡位置；2）区域 i
的平衡位置和边界；3）分子位置保持不变。该过程

由式（13）描述：

      

                                                                                  （13）

式中： 为 i 区域中的平衡位置；U、L 为问题的

上下边界；r3 为 [0, 1] 内的随机数。

对于区域 j 内分子，由于区域 j 浓度较高，其在

同一区域内改变位置，因此根据区域 j 平衡位置更新

位置，边界问题由式（14）计算：

          （14）

式中： 为区域 j中的平衡位置；r4为0~1的随机数。

若 i 区域浓度较低，而 j 区域浓度较高，则采用

上述策略，反之，分子从 j 区域移动至 i 区域。

2）平衡算子（EO）（从探索到开发的过渡阶段）。

该阶段分子通过以下方式更新位置：

              
（15）

式中： 为分子 p 在平衡阶段 EO 中的位置；

为分子 p 在组 g 中的位置； 为平衡阶段

EO 中分子 p 的移动步长； 为组 g 中的平衡位置；

为 g 组中区域的相对量，其公式为

                              （16）

3）稳态算子（SSO）（开发阶段）。开发阶段

中分子使用式（17）更新位置，

    （17）

式中： 为分子 p 更新后的位置； 为稳态位置；

为分子 p 的位置； 、 为区域 g 和运动步

长的相对量，其公式为

                                     （18）

其中 为 ±1 的方向因子， 为 0~1 的随机数，

为扩散速率因子。

FLA 算法流程见图 2：

3.3 Logistic 映射初始化种群位置

Logistic 映射是一种简单的混沌动力学模型，用

于初始化种群位置，生成多样化序列以增强全局搜索

图 2 FLA 算法流程图

Fig. 2 FLA algorithm flowchart
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能力，其数学公式描述如式（19），该公式通过迭代

初始值 xn 生成序列数据。

                                          （19）

式中：xn 为初始值，为 0~1 的随机数；xn+1 为更新后

的值。

3.4 螺旋波动搜索法更新分子位置

螺旋波动搜索源于自然界中捕食行为的仿生，其

基本思想是通过螺旋运动的随机特性和收敛特性以

平衡局部搜索和全局搜索。螺旋轨迹与波动幅度会根

据距离和时间进行调节，以提高搜索效率，其公式为

           （20）

                               （21）

式中：Xt+1 为更新后的个体位置；Xt 为当前个体位置；

E 为控制搜索幅度的缩放因子；b 为螺旋收缩控制常

数，控制收缩速率；l 为螺旋运动参数，决定个体绕

猎物的螺旋规律，其值随迭代为一次数变化，其值随

时间增大，模拟趋近猎物的行为；cos (2πl) 用于产生

螺旋运动波动的函数；Xprey 为猎物的位置，表示全局

最优解或目标位置；d(Xt, Xprey) 为个体与猎物之间的

欧氏距离； 为 [-1, 1] 内均匀分布随机向量，用于增

加搜索过程中的随机性。

3.5 柯西 - 高斯变异策略

柯西 - 高斯变异策略是一种在演化算法中的变

异机制。它结合了柯西分布与高斯分布的特性，用以

探索解空间，并平衡局部与全局搜索能力。

柯西分布与高斯分布相比，在距离均值较远区域

仍然具有较高概率密度，表明该分布会生成较大值，

使搜索能覆盖更广范围，有助于探索解空间的不同区

域，增强算法全局搜索能力。

高斯分布生成数值较为集中，通常用于局部搜索，

结合柯西分布可使算法在局部细致调整的同时，进行

大范围跳跃搜索，从而提升整体优化效果，公式为

            ，          （22）

式中：Xmut为变异后的解即新个体；Xbest为当前最优解；

γ为缩放因子，控制变异幅度；Ccauchy、Ggaussian 分别为

从标准柯西分布和从标准高斯分布中采样的随机数。

该变异机制包含大范围跳跃搜索（由柯西分布提

供）和局部微调（由高斯分布提供），可有效避免陷

入局部最优解，并保证搜索的稳定性。

4 CNN-BiLSTM 网络

一维卷积神经网络（1D-CNN）通过卷积核在输

入数据的单个维度上滑动，提取局部特征，尤其适合

数据具有强局部相关特性的情况。双向长短时记忆网

络是一种基于长短期记忆的序列模型，通过前向和后

向两个长短记忆的网络处理输入序列。它克服了传统

递归神经网络对长序列信息捕捉不足的问题。两者输

出的结果被组合在一起作为最终输出。这种双向结构

使得模型可以同时捕捉到当前时间步之前和之后的

上下文信息。网络结构如图 3 所示。

5 IFLA-CNN-BiLSTM 预测模型

基于 IFLA-CNN-BiLSTM 模型的短期电力负荷

预测方法的步骤如下：

1）将超参数学习率、CNN 输出通道数、卷积核

大小、LSTM 神经元数、时间步长赋值为分子位置，

Logistic 映射初始化位置，同时采用螺旋波动搜索更

新分子位置，通过柯西高斯变异策略增强对最优位置

搜索的收敛精度，最后输出超参数的最优值。

2）更新 CNN-BiLSTM 网络超参数，经过标准化

归一化处理的数据和体感温度指数，输送至 1D-CNN

图 3 CNN-BiLSTM 网络结构图

Fig. 3 CNN-BiLSTM network structure diagram
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神经网络中，经 1D-CNN 分析，并提取数据的局部

特征。

3）数据经过 1D-CNN 网络处理后，输送至

BiLSTM 神经网络进行数据预测。数据特征经过全连

接层后并经过反归一化，最终输出预测结果。

模型流程如图 4 所示。

6 实例分析及效果演示

6.1 数据划分及评估指标

采用 2022 年 3 月湖南某地居民负荷数据集进行

模型训练和测试，选取前 80% 数据点为训练集，后

20% 数据点为测试集，每 15 min 一个采样点，每天

96 组数据，共 2 976 组数据，负荷数据可视化如图 5
所示。

模型每次迭代结束后，会输出损失值 loss，其采

用的是均方误差，损失值包含一个标量值，表示输出

和目标值之间的均方误差。这个损失值用于指导模型

参数更新，减少预测误差。

模型输出结果采用均方根误差（RMSE）、平均

绝对误差（MAE）、平均绝对百分数误差（MAPE）、

决定系数（R2）作为评估指标。其中 RMSE 提供了

预测误差的标准偏差，是对较大误差较敏感的指标。

MAE 提供了预测误差的平均绝对值，可直观地反映

预测值与实际值的误差大小。MAPE 以百分比的形

式表示预测误差，便于理解和比较不同模型的性能。

R2 提供了模型解释数据变异的比例，是衡量模型拟

合度的常用指标。

6.2 CNN-BiLSTM 网络超参数寻优

IFLA 寻优过程如下：1）在边界范围内随机生成

初始种群并计算初始种群的适应度。2）使用当前迭

代次数 t 作为自由度参数进行位置更新。3）分别使

用扩散阶段、平衡阶段和稳态阶段进行更新。4）通

过螺旋波动搜索策略进一步优化个体位置。5）将新

个体的值限制在变量边界内，更新种群中的每个个

体位置。6）计算新种群的适应度值，并根据适应度

进行排序并依据种群维度保留当前最优个体作为新

种群。7）如果当前种群中有新的最优个体，则更新

全局最优解和最优适应度值。若达到最大迭代次数，

则停止算法；否则返回步骤（2）继续迭代。

同时采用 FLA、PKO、SSA 对 CNN-BiLSTM 网

络寻优，并与 IFLA 对比。均设置种群维度为 15、迭

代次数为 100。CNN-BiLSTM 网络超参数寻优范围

如表 1 所示，寻优结果如表 2 所示。

6.3 模型预测结果与分析

将 IFLA-CNN-BiLSTM 模型分别与 FLA-CNN-
BiLSTM 模 型、PKO-CNN-BiLSTM 模 型、SSA-

湖　南　工　业　大　学　学　报  2026 年

图 4 IFLA-CNN-BiLSTM 模型流程图

Fig. 4 IFLA-CNN-BiLSTM model flowchart

图 5 湖南某地居民电力负荷曲线

Fig. 5 Electricity load curve of residents in a certain place in 
Hunan Province

表 2 超参数寻优结果

Table 2 Super-parameter optimization results

算法 lr lb/min n k h

IFLA 0.007 35 19 77 2 50

FLA 0.009 30 23 40 2 52

PKO 0.003 85 11 110 2 50

SSA 0.001 00 50 102 3 100

表 1 CNN-BiLSTM 网络超参数寻优范围

Table 1 CNN-BiLSTM network super-parameter 
optimization range

超参数 寻优范围

学习率 lr [0.001, 0.01]

时间步长 lb/min [10, 50]

CNN 层输出通道数 n [32, 128]

卷积核大小 k [2, 5]

BiLSTM 层隐藏单元数 h [50, 100]
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CNN-BiLSTM 模型进行对比，迭代次数都设置为

100。预测结果如图 6 所示，图 7 为误差对比图，评

估值如表 3 所示。

其中 RMSE、MAE、MAPE 均用于衡量模型预

测误差，其数值越小，表明模型的预测精度越高，泛

化误差越小，模型拟合效果越优；R2 衡量模型对因

变量方差的解释能力，数值越接近 1，说明模型的拟

合优度越高，方差解释能力越强。

由表 3 可知，IFLA-CNN-BiLSTM 与其他模型相

比，RMSE 分别下降 1 920, 9 050, 1 840 kW，MAE
分别下降 3 650, 7 690, 1 790 kW，MAPE 分别下降

1.566%, 1.786%, 0.491%，R2 分 别 上 升 0.3%, 2.0%, 
0.3%。当 RMSE、MAE、MAPE 上升时，表示模型

误差增大，预测偏差加剧，模型精度下降；当 R2 下

降时，说明模型解释变量变化的能力减弱，可能存在

欠拟合风险。

通过观察，其中无论是对峰值和谷值的预测还是

和实际值曲线的拟合度，IFLA-CNN-BiLSTM 模型较

其他对比模型效果更为优异，在面对数据的急剧变化

时更能把握数据曲线特征，在峰值和谷值的预测中也

更为契合和平缓，IFLA-CNN-BiLSTM 模型的误差曲

图 6 不同模型预测结果对比图

Fig. 6 Comparison chart of  prediction results under 
different models

图 7 不同模型的预测误差对比图

Fig. 7 Comparison chart of prediction errors 
under different models

a）IFLA-CNN-BiLSTM 模型

b）FLA-CNN-BiLSTM 模型

c）PKO-CNN-BiLSTM 模型

d）SSA-CNN-BiLSTM 模型

表 3 不同模型的评估值对比

Table 3 Comparison of evaluation values under
different models

算  法 RMSE/104 kW MAE/104 kW MAPE/% R2/%

IFLA-CNN-BiLSTM 1.305 0.882 2.558 98.9

FLA-CNN-BiLSTM 1.497 1.247 4.124 98.6

PKO-CNN-BiLSTM 2.210 1.651 4.344 96.9

SSA-CNN-BiLSTM 1.489 1.061 3.049 98.6

a）总体图

b）局部放大图



32 湖　南　工　业　大　学　学　报  2026 年

线较其他对比模型也更收敛。

7 结语

IFLA 通过运用 Logistic 映射初始化种群位置，

提高初始化位置的多样性，提升算法全局搜索能力；

在螺旋波动搜索策略下，分子能根据多种路径调整位

置以搜索全局最优解；同时引入柯西 - 高斯变异策

略以解决算法后期收敛度不高和陷入局部最优解的

问题。经体感温度指数放大后的气象特征能较好地

辅助模型进行季节性和趋势性预测，与原模型对比，

性能有一定提升。

通过对负荷数据集的对比仿真分析，本文所提出

基于体感温度和 IFLA-CNN-BiLSTM 短期电力负荷

预测模型与其他寻优算法组合预测模型相比，在面对

多因素特征、非线性强的数据时能很好地分析和处

理。但 IFLA 的引入增加了模型计算量，存在预测速

度慢的缺点，后续需进一步优化以减少训练时间。
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