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Short-Term Power Load Forecasting Based on Perceived Temperature and
IFLA Optimized CNN-BiLSTM
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(1. School of Transportation and Electrical Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China;
2. State Grid Zhuzhou Power Supply Company, Zhuzhou Hunan 412000, China )

Abstract: In view of an accurate prediction of the impact of power load on optimizing power generation and
scheduling plans, as well as an improvement of economic efficiency, so as to ensure safe operation of the power grid, a
short-term power load forecasting model has thus been proposed based on perceived temperature and improved Fick’s
law algorithm (IFLA) optimized CNN BiLSTM. Logistic mapping, Cauchy Gaussian mutation strategy, spiral wave
search, and other techniques are used to improve FLA. Firstly, the features of meteorological data are amplified by
adopting the somatosensory temperature formula. Secondly, the CNN BiLSTM network is subjected to hyperparameter
optimization using IFLA. Finally, the CNN BiLSTM performs feature extraction on the data and outputs prediction
results. On the basis of simulation experiments on the residential load dataset of a certain location in Hunan Province
in March 2022, the experimental results show that the IFLA-CNN BiLSTM prediction model outputs root mean square
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error, average absolute error, average absolute percentage error, and coefficient of determination of 1.305, 0.882, 2.558%,

and 0.989, respectively, verifying the generalization and reliability of the IFLA-CNN-BiLSTM model in practical

environmental applications.

Keywords: short-term power load forecasting; perceived temperature; improved Fick’s law algorithm
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IFLA  0.007 35 19 77 2 50
FLA  0.009 30 23 40 2 52
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