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[I-MPC and PLL-Based Control Strategy for Unbalanced Grid PWM Rectifiers

ZHANG Xueyi, LIU Xingjiang
( School of Transportation and Electrical Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China )

Abstract: In view of a switching frequency reduction of the PWM rectifier power devices as well as an
improvement of the anti-interference ability, a low switching frequency operation algorithm has thus been proposed
based on an inverse model predictive control and an improved phase-locked loop control algorithm on the basis of LMS
iterative algorithm control vector matrix so as to achieve fast tracking at the network end, thus weakening its influence,
as well as improving the tracking efficiency of the phase-locked loop. A simulation analysis is conducted by using
Matlab, with the results showing that the proposed strategy is characterized with a stable active and reactive power, a
reduction in AC side current distortion rate, and a good performance in stability, thus verifying the effectiveness and
feasibility of the proposed method.

Keywords: unbalanced grid; model predictive control; active disturbance rejection controller; LMS iterative
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compensation added
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