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Numerical Simulation of Cooling Coatings Applied to Architectural Surfaces

MA Chengpeng, ZHAO Fuyun, ZHAO Shangxian, LIU Chuang
( School of Civil and Environmental Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China )

Abstract: In view of a further inquiry into the impact of the applied high reflective cooling coatings on the external
envelope of buildings on the wind and thermal environment of architectural blocks, a numerical simulation has thus been
made of four different coating methods of building envelope applied coatings by adopting computational fluid dynamics
(CFD) method. The research results indicate that the surface temperature of the building is under a significant effect of
the cooling coatings. When the wall absorption rate decreases from 0.85 to 0.10, the wall temperature directly exposed to
sunlight can be reduced by up to 15 °C . However, for shaded areas not directly exposed to the sun, the temperature actually
increases by 1.0~1.5 °C . There is a variation of the impact of different coating methods on the environment as well. With
roof coatings applied, the temperature of the pedestrian layer rises by about 0.2 °C , and the average air age increases by 2
seconds compared to that under a no-coating condition; with the wall paint applied, the maximum temperature drops at
pedestrian layer height is between 0.5 and 2.0 °C , with the airflow velocity of the pedestrian layer height slowing down
by 5%~10%, especially when the leeward wall is heated, the average air age of the pedestrian layer height increases by
4 seconds.
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Table 1 Material specification settings
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Table 2 Parameter settings under all operating conditions
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