doi:10.3969/j.issn.1673-9833.2023.05.006

锂离子电池液冷管路优化

陈 皓¹,赵福云^{1,2},谭志成¹,姚奕合¹

(1. 湖南工业大学 土木工程学院, 湖南 株洲 412007; 2. 武汉大学 动力与机械学院, 湖北 武汉 430072)

摘 要: 锂离子电池热管理系统是提高冷却效率的关键。针对车载锂离子电池的液冷通道管路,对其进行设计优化,建立了相应的数值模型,并通过实验验证了数值模型的可行性。研究结果表明: 微通道冷却系统在高倍率放电下,可以将电池的温差从 9.74 K 降低至 4.71 K,最高温度从 309.74 K 降低至 305.13 K,都在最佳工作范围之内。通过对冷却液温度的研究发现,只通过降低冷却液温度并不能改善电池的温度环境,需要一个合适的温度来保障电池的温差,并且冷却液温度与电池的温差呈现出线性关系,电池的温差随着冷却液的温度降低而增大。

关键词: 锂离子电池; 电池热管理系统; 微通道冷却; 温差

中图分类号: U469.7; TM912 文献标志码: A 文章编号: 1673-9833(2023)05-0044-08

引文格式: 陈 皓,赵福云,谭志成,等.锂离子电池液冷管路优化[J]. 湖南工业大学学报,2023,37(5):44-51.

Optimization of Liquid Cooling Pipeline for Lithium-Ion Batteries

CHEN Hao¹, ZHAO Fuyun^{1, 2}, TAN Zhicheng¹, YAO Yihe¹

(1. College of Civil Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China; 2. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China)

Abstract: Due to the fact that the thermal management system of lithium-ion batteries is the key to the improvement of cooling efficiency, a corresponding numerical model has been established to optimize the design of the liquid cooling channel pipeline for vehicle lithium-ion batteries, with the feasibility of the numerical model to be demonstrated through experimental verification. The results show that under a high-rate discharge, the microchannel cooling system can reduce the temperature difference of the battery from 9.74 K to 4.71 K and the maximum temperature from 309.74 K to 305.13 K, both within the optimal operating range. A research on the coolant temperature reveals that an improvement of the temperature environment of the battery cannot be achieved by simply reducing the coolant temperature. A suitable temperature is needed to ensure the temperature difference of the battery, with a linear relationship between the coolant temperature and the temperature difference of the battery. Meanwhile, the temperature difference of the battery increases as the coolant temperature decreases.

Keywords: lithium-ion battery; battery thermal management system; microchannel cooling; temperature difference

收稿日期: 2022-04-11

基金项目:湖南省科技创新领军人才基金资助项目(2020RC4032)

作者简介: 陈 皓(1998-), 男, 江西抚州人, 湖南工业大学硕士生, 主要研究方向为绿色储能及电子器件热管理,

E-mail: 1368113191@qq.com

通信作者:赵福云 (1977-),男,湖南茶陵人,湖南工业大学教授,博士,主要研究方向为城市通风,电子器件热管理等, E-mail: 1065093523@qq.com

0 引言

锂离子动力电池具有能量密度高、循环寿命长、电荷保持能力高且无记忆效应等优点,在混合动力以及电动汽车等多种电动设备中得到了广泛应用^[1-2]。现阶段,动力电池作为目前比较主流的化学电源,在内部由化学能转化为电能时,因发生复杂的电化学反应,而产生大量热量。大量热量在电池内部聚积时,会加快化学反应速率,使得电池温度不断升高,这可能导致漏液、爆炸等情况,电池的寿命以及各使用人员的安全得不到有效的保障。因此,电池热管理系统在保障电池运行中具有重要作用^[3-4]。

电池组内部温度分布均匀性控制是当前的研究 热点。电池温度分布不均匀,不仅会造成电池容量失 衡,还会直接导致电池性能折损,破坏电池的同一性 及可循环性 [5-7]。因此,需保证电池内部温度的均匀 性,电池温差应控制在 0~5~℃,最高温度范围控制 在 20~50~℃,以此使电池的性能保持最大优势 [8]。

市场上现存有方形、圆柱形和薄片型 3 种结构形 式的锂离子电池。方形锂离子电池尺寸的可塑性和灵 活性较强,圆柱形电池形状单一,且需特定装置固定 配合。方形钾离子电池包的冷却方式分为空气冷却、 液体冷却、热管冷却以及相变冷却。空气冷却仅依 靠空气与电池的对流换热来带走锂离子电池电化学 反应产生的热量, 空气的热导率较低, 散热效果难 以满足锂电池的正常需求[9]。相变材料存在导热性能 低、封装困难等缺点,需要填充材料如金属填料[10]、 膨胀石墨[11]、翅片[12]等来增加其散热性,提高导热率。 液体冷却可增加电池与液冷板之间的换热效果, 并且 液冷具有较好的温度均匀性,相较于空气冷却,冷却 效率以及 NVH (Noise、Vibration、Harshness) 性能 更佳 [13]。Huo Yutao 等 [14] 针对方形锂电池设计了微 通道冷却,对比不同微通道的数量、冷却液入口方向 的模拟,结果显示冷却液存在一个最优质量流量,如 果超过该流量, 电池冷却系统的效率会降低。王晓斌 等[15]设计了液冷板不同工艺类型、流道、尺寸的对 比实验,发现在保证电池温度以及合理温差范围内, 要平衡电池与液冷板间纵向导热能力和横向导热能 力。动力锂离子电池的高能耗、快速充电已是基本要 求, 所以在高倍率充放电情况下, 对电池热管理系统 进行优化, 使电池的温差及最高温度在合理范围内。

因此,本文拟针对方形锂离子电池液冷散热方式 进行模拟仿真实验。对电池的管道进行重新优化设 计,将原模型的液冷板修改为微通道液冷方式,并且 在电池的两侧增加液冷管道,增加电池与液冷板的接 触面积,同时增强对电池的固定包裹性,以有利于提 升电池的安全性能。通过数值模拟,对比优化前后的 最大温差以及最高温度可知,在高倍率放电的情况 下,更改冷却液入口温度,优化后的电池最大温差以 及最高温度皆在其最佳工作范围之内。

1 锂电池组模型建立

1.1 电池生热速率及传热速率模型

模拟车载锂离子动力电池液冷管路系统由正负极、隔膜、电解液、集流体、硅胶、液冷板等组成。电池生热速率是电池热管理中评价和分析的重要基础。电池的结构、使用条件、电流密度、荷电状态以及环境温度等众多因素,在试验中具有非线性并且难以准确测量 [16]。

在单体电池的生热速率计算方面,目前广泛使用 Bernardi 电池生热速率方程计算^[17],计算式如下:

$$q = \frac{1}{V} \left(E_{\rm OC} - U - T \frac{\mathrm{d}E_{\rm OC}}{\mathrm{d}T} \right) = \frac{1}{V} \left(IR + T \frac{\mathrm{d}E_{\rm OC}}{\mathrm{d}T} \right)_{\circ} \quad (1)$$

式中: V为电池体积; U为工作电压; I为工作电流; R 为电阻; E_{OC} 为开路电压; T为电池内起始温度,

取 300 K; $T \frac{dE_{oc}}{dT}$ 为可逆反应热, 充电吸收热量为负, 放电产生热量为正。

1.2 热物性参数

电池组件各部分材料不同,所以各组件的热物性 参数各不相同。锂电池的结构为层叠结构,其导热系 数在不同方向上不同。锂电池各层并联,厚度方向电 池各层结构串联。根据串并联原理,可以估算各个 方向的热物性参数。其中 x 为厚度方向,y、z 分别 为平行于电池方向面的水平方向和竖直方向,x、y、 z 方向的导热系数分别为

$$K_{x} = \sum L_{i} / \left(\sum L_{i} / k_{i}\right), \tag{2}$$

$$K_{yz} = \left(\sum L_i k_i\right) / \sum L_{i\circ} \tag{3}$$

式(2)(3)中: L_i 为相应方向电池各部分的长度; k_i 为相应方向电池各部分的导热系数。

电池单体的定压比热容 C_p 一般被看做常数,其计算公式为

$$C_{p} = \frac{1}{m_{b}} \sum C_{i} m_{i} \, _{\circ} \tag{4}$$

式中: C_i 为各电池组件的比热容; m_i 为各电池组件的质量; m_b 为电池总质量。

电池的平均密度为电池的总质量与电池的总体积之比,其表达式为

$$\rho = m_{\rm b}/V_{\odot} \tag{5}$$

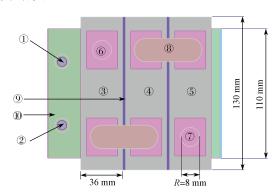
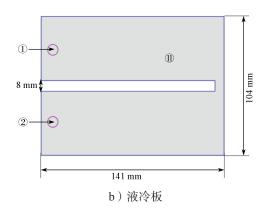

电池材料的热物性参数如表 1 所示。

表 1 电池材料的热物性参数 Table 1 Battery material properties


材料	密度/(kg·m ⁻³)	比热容 / (J·kg ⁻¹ ·K ⁻¹)	热导率 / (W·m ⁻¹ ·K ⁻¹)
电芯	2 092	678	<i>x</i> /0.5 、 <i>y</i> /18.5 、 <i>z</i> /18.5
铜	8 978	381	387.6
铝	2 719	871	202.4
硅胶	2 750	1 500	2
水	998.2	4 182	0.3

1.3 物理模型

锂离子动力电池模组如图 1 所示,模组结构为 1P3S(一并联三串联)。整个模组由 3 块方形电池、导热元件以及方形液冷通道组成。导热元件为绝缘硅胶,厚度为 2 mm,与电池之间紧密贴合。由于硅胶有良好的导热性能,在电池运行产生大量热量时,可以使热量分布更加均匀。液冷板在电池底部,通过液冷板内流体不断流动,带走电池运行时产生的热量,从而达到降温效果。由于电池包相同,冷却结构中不同单元的传热机制相同,因此从中选取一个单元作为研究对象。

a) 电池热管理系统俯视图

图 1 电池模组几何模型

Fig. 1 Battery module geometric modeling

单个锂离子电池的相关参数如下:尺寸为130 mm×36 mm×108 mm;标称容量为60 A·h;正极材料为铝,负极材料为铜;额定电压为3.7 V,最小终止电压为3.0 V,最大终止电压为4.3 V。

1.4 网络划分

首先在 Space-claim 中建立模型,再将其导入 Fluent-mesh 中,对其几何模型进行网格划分,在电池外壳及液冷板外部设置较大的网格尺寸。液冷通道部分设置比较精细的网格尺寸,最小尺寸为 0.4 mm,最大尺寸为 4.5 mm,电池网格模型如图 2 所示。

图 2 电池网格模型 Fig. 2 Battery grid model

在计算中,网格精度对计算结果以及解的收敛性影响较大,在对模型边界条件设定时需要保证精度值准确。对模型的网格独立性进行了验证,得到的结果如图 3 所示。1C放电时(C为放电倍率),在4 种不同的网格数量下,模拟出电池的最高温度。由图 3 可知,随着网格数量的增加,电池最高温度在网格数量低于 6.7×10⁵ 时,最高温度有明显的变动,之后的温度变化趋于平稳收敛。为减少计算量,最终取软件网格生成数量为 675 068。

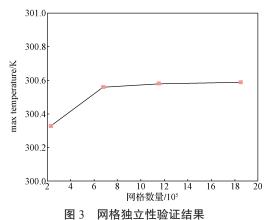


Fig. 3 Grid independence verification results

1.5 初始和边界条件

模块的初始温度以及冷却液温度为300 K,工作环境温度固定为300 K。正极为铝,负极为铜,电芯

以及硅胶等材料物性参数见表 1。液体入口设置为速度入口,速度值为 0.1 m/s;出口设置为压力出口,表压设置为 0 Pa,壁面与外界空气进行热交换,壁面的传热系数为 5 W/(m²•K)。电池轴向面为对称结构,与其接触的表面均为耦合面。

数值计算采用 Fluent 对电池模组进行瞬态模拟,空间导数项采用二阶迎风差分格式,时间导数项采用一阶隐式格式,使用 SIMPLE 方法处理压力 - 速度的耦合。

1.6 电池模型的试验验证

为了保证数值计算的准确性,本次模拟将与文献 [18] 所测得试验值进行对比分析,电池在 1C 放电以及冷却液流速为 0.1 m/s 的情况下,将试验的 3 块电池的平均放电温度与数值模拟平均温度进行对比,结果如图 4 所示。由图 4 可知,电池在 3 500 s 内试验放电温度与模拟值温度趋势相同,试验值最高温度为 300.95 K,模拟值相对温度为 300.83 K,试验值与模拟值在一个小时内最大的温度绝对误差为 0.12 K,最大相对误差在 1% 内,足以说明模拟模型的可靠性。

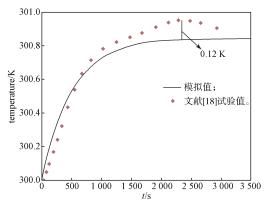
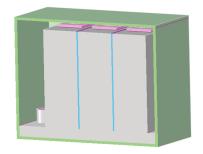
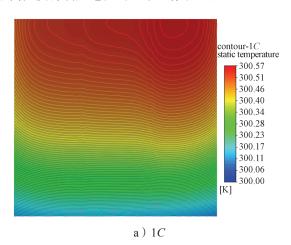
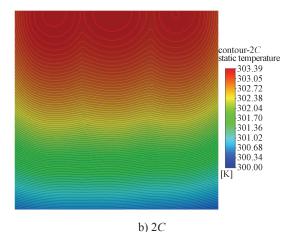


图 4 电池在 1C 放电时模拟值与文献 [18] 试验值对比曲线 Fig. 4 Comparison curve between simulated values of battery discharge at 1C and experimental values in reference [18]

2 热仿真结果分析

2.1 电池组温度分布对比分析

截取电池竖向截面中心平面如图 5 所示。

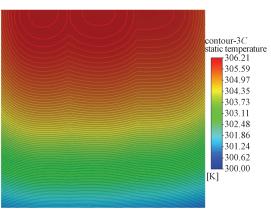

图 5 电池竖向截面中心平面图

Fig. 5 Battery cross-section selection

模拟了 4 种不同放电倍率下放电结束时的电池温度,不同工况下,电池温度的截面分布云图如图 6 所示,电池表面温度变化及温差如图 7~8 所示。由图 6~8 可知,电池的竖向温度呈现出阶梯状,越靠近液冷板处的温度越低,且随着电池放电倍率的增加,电池的横向温度分布更为均匀。电池的最高温度每增加 1C 的放电倍率,最高温度都升高 3 K 左右,呈一定的线性关系,在 1C 和 4C 的工况下,两者最高温度相差 9.17 K,温度上升十分明显。4 种工况下的电池最高温度都满足电池的正常工作状态。

c) 3C

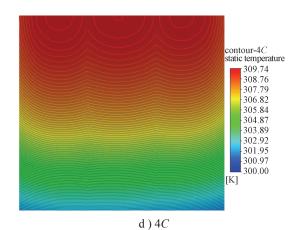


图 6 不同工况下的温度云图

Fig. 6 Temperament nephogram under different operating conditions

由图 7~8 可知,在 1C以及 2C的放电倍率下,电池的最高温度以及温差都在合理的安全范围之内。在 3C和 4C高倍率放电下,电池的温差分别达到 6.21,9.74 K,已经超过电池的最佳工作温差,并在 4C的工况下,其温差已超过最佳温差的 95%。故需对电池进行进一步的优化。

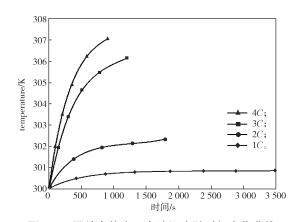


图 7 不同放电倍率下电池温度随时间变化曲线 Fig. 7 Battery temperature variation curves over time at different discharge rates

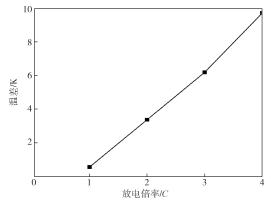


图 8 不同放电倍率下的温差

Fig. 8 Temperature difference at different discharge rates

2.2 液冷板温度分析

液冷板温度分布云图如图 9 所示。冷却液在液冷板内不断流动,通过对冷却液与液冷板之间的对流换热,将电池运行产生的热量与外界进行热交换。液冷板在 4C 的工况下,内部温差达 3 K,说明该模型的热管理系统对电池的降温具有一定效果,温度较高区域主要集中在第二块以及第三块电池部分。

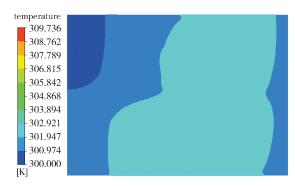


图 9 液冷板温度分布云图

Fig. 9 Cloud map distribution of the liquid cooling plates

冷却液迹线图如图 10 所示,在冷却液流动的过程中,交汇处的流速较高,液体速度方向杂乱,形成较大涡流,影响液体流动速度,且形成涡流的地方与板间温度相衬,导致热管理系统的冷却效率降低。

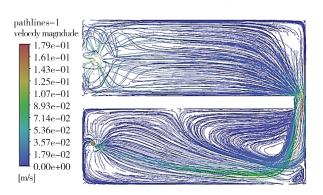
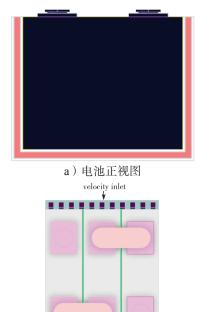



图 10 冷却液迹线图 Fig. 10 Coolant trace diagram

3 微通道热管理系统

3.1 微通道热管系统数值模型

基于上文所述模型的涡流影响,在电池高倍率放电工况下,电池温差过大,而微通道热管理模型可以有效地消除涡流影响,降低电池模组的最高温度和温差,故采用微通道热管理系统进行优化,优化后的几何模型示意图如图 11 所示。微通道热管理系统共有 11 个通道,通道人口与出口都为 5 mm 的正方形,每个通道之间相距 5 mm,整个微通道冷却板的宽度为 9 mm。

pressure outlet b) 电池热管理系统俯视图

图 11 微通道电池模组示意图

Fig. 11 Microchannel battery modules

对新模型重新进行网格验证, 所得结果如图 12 所示。由图 12 可知,在 7×105 网格之后的温度趋于 收敛, 所以为减少计算量, 优化模型采用 728 183 个 网格数量进行数值模拟,所得的模型如图 13 所示。

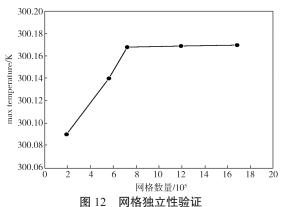


Fig. 12 Grid independence verification

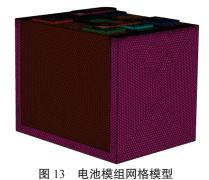


Fig. 13 Battery module grid model

3.2 结果与分析

原电池模组在 1C、2C 放电工况下,最高温度以 及温差都在正常范围之内, 所以优化模型只针对于该 电池模组在4C工况下的最高温度以及温差进行分析。

模型在 4C 工况下,温度云图如图 14 所示,被 冷却板所包裹的地方温度较低,温度较高的地方主要 集中在中上部分,相较于原模型,高温区域明显减少。 最高温度为 305.13 K, 最低温度为 300.42 K, 温差为 4.71 K, 在合理范围内, 达到预期优化目标。但是, 距离临界最佳温差较近,尝试降低冷却液温度来进一 步降低温差。

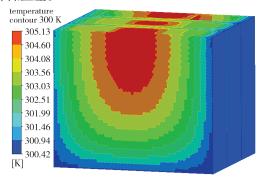
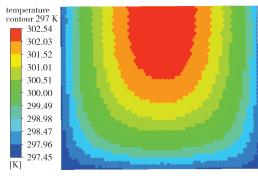



图 14 优化模型温度云图

Fig. 14 Optimized temperature cloud map of the model 将冷却液的温度降低至 299, 298, 297, 296 K 时分 别进行模拟,最大限度降低锂离子电池模组在高倍率 放电工况下的温差。4种工况模拟云图如图 15 所示, 所选取的截面为③号电池平面,随着冷却液温度降 低, 电池的最高温度明显降低, 最低温度与冷却液温 度相差约 0.43 K。

b) 298 K

c) 297 K

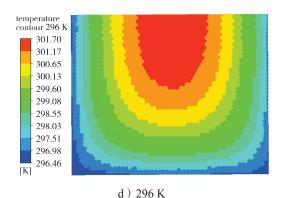


图 15 4C 放电下不同冷却液温度电池的温度云图 Fig. 15 Cloud map of the battery temperature at different coolant temperatures under 4C discharge

优化模型的温差如图 16 所示。由图 16 可以看出,随着冷却液温度降低,电池的温差并没有得到很好的优化。相反,冷却液温度越低,电池的温差越大。 当冷却液温度在 296 K 和 297 K 时,电池的温差达 5 K 以上或接近 5 K,未达到目标预期。

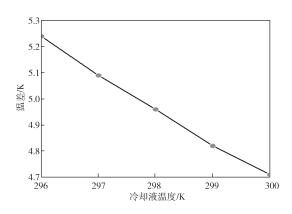


图 16 优化模型温差

Fig. 16 Temperature difference of the optimized model

原模型中,电池在 3*C*、4*C* 放电工况时,电池的温度以及温差明显上升,并且已经超出锂离子电池最佳工作温度范围。在 4*C* 工况下,模型优化前后电池的温差以及最高温度对比如表 2 所示。由表可知,优化模型的最高温度和温差均比原试验模型值要低。

表 2 微通道液冷模型优化结果与原模型对比

Table 2 Comparison of optimization results of the microchannel liquid cooling model

模型	最高温度 /K	温差 /K
试验模型	309.74	9.74
优化模型	305.13	4.71

4 结论

本文建立了锂离子动力电池模型,并通过模型试验验证了模型的准确性。为优化电池组在高放电倍率下温度过大的问题,对模型的冷却通道重新建模,得到优化模型仿真的最高温度以及温差数据,与原模型进行对比,可得到以下结论:

- 1) 锂离子电池组在方形液冷板冷却条件下,冷却效果一般,而在高倍率 4*C* 放电工况下,电池的最高温差达 9.74 K。
- 2)采用微通道液冷的方式对电池进行优化,电 池在 4C工况下,电池的温差缩小至 4.71 K,同比降 低了 5.03 K,温差以及最高温度均达到预期优化目标。
- 3)在微通道热管理系统中,降低冷却液温度时 发现,并非冷却液温度越低越好,冷却液温度越低, 电池的最高温度也越低,但是电池的温差并没有得到 改善,相反产生了负面影响。
 - 4)冷却液温度与电池温差呈一定的线性关系。

参考文献:

- [1] AN Z J, JIA L, DING Y, et al. A Review on Lithium-Ion Power Battery Thermal Management Technologies and Thermal Safety[J]. Journal of Thermal Science, 2017, 26(5): 391-412.
- [2] 华 政,梁 风,姚耀春.电动汽车电池的发展现状与趋势[J].化工进展,2017,36(8):2874-2881. HUA Zheng, LIANG Feng, YAO Yaochun. Status and Development Trend for Battery of Electric Vehicles[J]. Chemical Industry and Engineering Progress, 2017,36(8):2874-2881.
- [3] 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控 [D]. 北京:清华大学, 2016. FENG Xuning. Thermal Runaway Initiation and Propagation of Lithium-Ion Traction Battery for Electric Vehicle: Test, Modeling and Prevention [D]. Beijing: Tsinghua University, 2016.
- [4] WANG Qingsong, PING Ping, ZHAO Xuejuan, et al. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery[J]. Journal of Power Sources, 2012, 208: 210–224.

- [5] KIZILEL R, LATEEF A, SABBAH R, et al. Passive Control of Temperature Excursion and Uniformity in High-Energy Li-Ion Battery Packs at High Current and Ambient Temperature[J]. Journal of Power Sources, 2008, 183(1): 370–375.
- [6] YE Yonghuang, SHI Yixiang, TAY A A O. Electro-Thermal Cycle Life Model for Lithium Iron Phosphate Battery[J]. Journal of Power Sources, 2012, 217: 509– 518.
- [7] 康燕语. 电池液冷系统的应用与验证研究 [J]. 机电技术, 2018, 41(4): 69-71.

 KANG Yanyu. Application and Verification of Battery Liquid Cooling System[J]. Mechanical & Electrical Technology, 2018, 41(4): 69-71.
- [8] PESARAN A A. Battery Thermal Models for Hybrid Vehicle Simulations[J]. Journal of Power Sources, 2002, 110(2): 377-382.
- [9] 阳 斌, 夏顺礼, 赵久志, 等. 电池组空气冷却技术 研究 [J]. 汽车实用技术, 2016(10): 24-26. YANG Bin, XIA Shunli, ZHAO Jiuzhi, et al. Forced Air Cooling Technology Research on Battery[J]. Automobile Technology, 2016(10): 24-26.

[10] 王彦红, 张成亮, 俞会根, 等. 相变材料在动力电

- 池热管理中的应用研究进展 [J]. 功能材料, 2013, 44(22): 3213-3218.

 WANG Yanhong, ZHANG Chengliang, YU Huigen, et al. The Progress of Phase Change Materials Applied in Battery Thermal Management[J]. Journal of Functional Materials, 2013, 44(22): 3213-3218.
- [11] 陈思彤, 李微微, 王学科, 等. 相变材料用于质子交换膜燃料电池的热管理 [J]. 化工学报, 2016, 67(增刊1): 1-6.

 CHEN Sitong, LI Weiwei, WANG Xueke, et al. Thermal Management Using Phase Change Materials for Proton Exchange Membrane Fuel Cells[J]. CIESC Journal, 2016, 67(S1): 1-6.
- [12] WANG Zhiwei, ZHANG Hengyun, XIA Xin. Experimental Investigation on the Thermal Behavior of Cylindrical Battery with Composite Paraffin and Fin

- Structure[J]. International Journal of Heat and Mass Transfer, 2017, 109: 958–970.
- [13] 李 罡, 黄向东, 符兴锋, 等. 液冷动力电池低温加热系统设计研究 [J]. 湖南大学学报 (自然科学版), 2017, 44(2): 26-33.

 LI Gang, HUANG Xiangdong, FU Xingfeng, et al.
 - LI Gang, HUANG Xiangdong, FU Xingfeng, et al. Design Research on Battery Heating and Preservation System Based on Liquid Cooling Mode[J]. Journal of Hunan University (Natural Sciences), 2017, 44(2): 26–33.
- [14] HUO Yutao, RAO Zhonghao, LIU Xinjian. Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate[J]. Energy Conversion and Management, 2015, 89: 387-395.
- [15] 王晓斌, 覃 峰. 电池液冷板设计及试验研究 [J]. 制冷与空调, 2020, 20(5): 41-44, 55.
 WANG Xiaobin, QIN Feng. Design and Experimental Study of Battery Liquid Cooling Plate[J]. Refrigeration and Air-Conditioning, 2020, 20(5): 41-44, 55.
- [16] 蔡森林,魏名山,宋盼盼,等. 基于直流道液冷板的动力电池冷却性能仿真[J]. 汽车安全与节能学报, 2021, 12(3): 380-385.

 CAI Senlin, WEI Mingshan, SONG Panpan, et al. Cooling Performance Simulation of the Power Battery Pack Based on Straight Liquid Cooling Plate[J]. Journal of Automotive Safety and Engergy, 2021, 12(3): 380-
- [17] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A General Energy Balance for Battery Systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
- [18] 井文明,宋述军,张 寅. ANSYS 电池仿真与实例详解:流体传热篇 [M]. 北京: 机械工业出版社, 2021: 85-97.
 - JING Wenming, SONG Shujun, ZHANG Yin. ANSYS Battery Simulation and Example Detailed Explanation: Fluid Heat Transfer Chapter[M]. Beijing: China Machine Press, 2021: 85–97.

(责任编辑: 姜利民)