doi:10.3969/j.issn.1673-9833.2019.03.010

Quasi-Z 源逆变器特性及空间电压矢量调制研究

周伟赫,易吉良,李军军,周 曼

(湖南工业大学 电气与信息工程学院,湖南 株洲 412007)

摘 要:为了改善Z源逆变器性能以满足不同的应用,利用小信号模型分析了Quasi-Z源逆变器电容、 电感参数变化对系统动态响应的影响。研究了直通零矢量被平均分成4段(SVPWM4)和6段(SVPWM6) 的空间电压矢量调制策略,对比分析了两种矢量调制方法对Quasi-Z最大直通占空比、最大升压系数、最大 电压增益性能等指标的影响。相比SVPWM6,SVPWM4可插入的直通零矢量能达到最大,开关电压应力小, 最大电感电流纹波低,性能指标更优。最后通过仿真验证了理论分析的正确性。

关键词: Quasi-Z 源逆变器; 小信号模型; SVPWM4; SVPWM6

中图分类号: TM464 文献标志码: A 文章编号: 1673-9833(2019)03-0062-08 引文格式: 周伟赫, 易吉良, 李军军, 等. Quasi-Z 源逆变器特性及空间电压矢量调制研究 [J]. 湖南工业 大学学报, 2019, 33(3): 62-69.

Research on Quasi-Z Source Inverter Characteristics and Space Voltage Vector Modulation

ZHOU Weihe, YI Jiliang, LI Junjun, ZHOU Man

(College of Electrical and Informational Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China)

Abstract: In order to improve the performance of Z-source inverters to meet different application requirements, by using small-signal model, an analysis has been made of the influence of capacitance and inductance parameters of Quasi-Z source inverters on the dynamic response of the system, followed by a research on the space voltage vector modulation (SVPWM) strategy, which divides the shoot-through vector into four segments (SVPWM4) and six segments (SVPWM6), as well as a comparison and analysis of the effects of two vector modulation methods on the maximum through duty cycle, maximum boost coefficient and maximum voltage gain performance of Quasi-Z. Compared with SVPWM6, the shoot-through zero vector of SVPWM4 is characterized with such advantages as the maximum value, a relatively small switching voltage stress, a low maximum inductance current ripple, and a better performance index. Finally, the correctness of the theoretical analysis can be verified by simulation.

Keywords: Quasi-Z source inverter; small-signal model; SVPWM4; SVPWM6

0 引言

Z 源逆变器首先由 Peng F. Z. 教授^[1]提出,它具

有结构简单、可靠性强、效率高的优点。在此基础上, 国内外学者对其进行了大量的研究,主要集中在 Z

收稿日期: 2018-07-27

- 基金项目:湖南省自然科学基金资助项目(2018JJ3127)
- 作者简介:周伟赫(1993-),男,河南许昌人,湖南工业大学硕士生,主要研究方向为电力电子与电力传动, E-mail: 764228440@qq.com
- **通信作者:** 李军军(1976-),男,江西宜春人,湖南工业大学讲师,博士,主要从事电力电子与电力传动方面的教学与研究, E-mail: 449087791@qq.com

源逆变器的拓扑结构、直通调制策略和控制方面^[2]。 在拓扑结构方面, Peng F. Z. 教授在传统 Z 源逆变器 的基础上,又提出了准阻抗源拓扑结构,包括输入电 流连续型和输入电流断续型两种。Tang Y. 等^[3]提出 了解决启动时电感电流冲击问题的串联型 Z 源逆变 器。此外,国内外学者还提出了减小电感/电容数目、 提高升压比^[4]等类型的各类拓扑结构,为 Z 源逆变 器在电机调速^[5]、光伏并网^[6]和电动汽车^[7]等领域 的应用打下了坚实基础。

在如何实现直通方式进而达到升压的目的上,国 内外学者提出了很多方法,最常用的有正弦脉宽调 制(sine pulse width modulation, SPWM),其中包 括简单 SPWM 控制、最大 SPWM 控制、最大恒定升 压比 SPWM 控制。除了 SPWM 调制方式以外,空间 电压矢量调制(space vector pulse width modulation, SVPWM)^[8]也被证明是一种有效的调制方式,它能 够减少开关管的切换时间,从而更有效地利用直流电 压,减小电压应力和开关损耗,降低输出电压和电流 的谐波含量,动态响应更快,因此在实际工作中得到 了广泛应用。

本文采用小信号模型^[9] 对 Quasi-Z 源逆变器进行 分析,对比了逆变器电感、电容的参数变化对系统特 性的影响,为逆变器的参数选取和控制器的设计提供 参考依据。通过间接控制方法,利用电容电压和直 流电压间接获得直流链电压。为了获得更好的性能, 着重研究了 Quasi-Z 源电压空间矢量调制策略,对比 分析了直通零矢量的不同分配方式对 Z 源系统整体 性能的影响。

1 Quasi-Z 源逆变器工作原理

Quasi-Z 源逆变器分为输入电流连续型和输入电 流断续型两种,本文采用输入电流连续型,其结构如 图1所示。

Fig. 1 Quasi-Z source inverter with continuous input current

逆变器工作时有直通和非直通两种状态。当它工 作于直通状态时,储存好能量的电容放电,电感充电, 输入二极管承受反向电压处于阻断状态,等效电路图 如图 2a 所示;在非直通状态时,二极管导通,电感放电,与直流电源一起作用维持电容电压,等效电路 图如图 2b 所示。

Fig. 2 Equivalent circuits of Quasi-Z source inverter

设 Quasi-Z 源逆变器的一个开关周期为 T, T_0 为 直通时间, T_1 为非直通时间, 则 $T_0+T_1=T$, 直通占空 比为 $D=T_0/T_0$ 。

当逆变器处于如图 2a 所示的直通状态时,有

$$\begin{cases} V_{L_1} = V_{C_2} + V_{dc}, \\ V_{L_2} = V_{C_1}, \\ V_{in} = 0 \ 0 \end{cases}$$
(1)

当逆变器处于如图 2b 所示的非直通状态时,有

$$\begin{cases} V_{L_1} = V_{dc} - V_{C_1}, \\ V_{L_2} = V_{C_1} - V_{in} = -V_{C_2}, \\ V_{in} = V_{C_1} + V_{C_2} \circ \end{cases}$$
(2)

一个开关周期 T 中,根据电感的伏秒平衡原理, 系统稳态下电感两端平均电压为零,有

$$\begin{cases} V_{L_{1}} = \overline{v}_{L_{1}} = \frac{1}{T} \int_{0}^{T} v_{L_{1}}(t) dt = \\ \frac{T_{0} \left(V_{C_{2}} + V_{dc} \right) + T_{1} \left(-V_{C_{1}} + V_{dc} \right)}{T} = 0, \\ V_{L_{2}} = \overline{v}_{L_{2}} = \frac{1}{T} \int_{0}^{T} v_{L_{2}}(t) dt = \\ \frac{T_{0} V_{C_{2}} + T_{1} \left(-V_{C_{1}} \right)}{T} = 0. \end{cases}$$

$$(3)$$

由式(1)~(3)得电容 C₁和 C₂两端的电压与 直流链电压 V_{in}分别为

$$\begin{cases} V_{C_1} = \frac{1 - D}{1 - 2D} V_{dc}, \\ V_{C_2} = \frac{D}{1 - 2D} V_{dc^\circ} \end{cases}$$
(4)

$$V_{\rm in} = V_{\rm C_1} + V_{\rm C_2} = \frac{1}{1 - 2D} V_{\rm dc} = B V_{\rm dc} , \qquad (5)$$

式中 $B = \frac{1}{1 - 2D}$ 为逆变器升压系数。

Quasi-Z 源逆变器输出相电压基波的峰值为

$$V' = M \cdot \frac{V_{\rm in}}{2} = \frac{MBV_{\rm dc}}{2} = \frac{GV_{\rm dc}}{2} , \qquad (6)$$

式中: M 为系统调制系数;

G为电压增益,且G=M·B。

由式(6)可以看出,通过控制*M*的大小可以实现交流侧输出电压的升降。

2 Quasi-Z 源逆变器小信号模型建模 与分析

在建立系统小信号模型时,考虑 Quasi-Z 源逆变 器中电感的等效串联电阻 r 和电容的寄生电阻 R 对 Z 源系统性能产生的影响,取

 $\hat{Fx} = A_1 x + B_1 u ,$

即:

$$\begin{split} & L_{1} \quad 0 \quad 0 \quad 0 \\ 0 \quad L_{2} \quad 0 \quad 0 \\ 0 \quad 0 \quad C_{1} \quad 0 \\ 0 \quad 0 \quad 0 \quad C_{2} \end{bmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \hat{i}_{L_{1}}(t) \\ \hat{i}_{L_{2}}(t) \\ \hat{v}_{C_{1}}(t) \\ \hat{v}_{C_{2}}(t) \end{bmatrix} = \\ & \begin{bmatrix} -(R+r) & 0 & 0 & 1 \\ 0 & -(R+r) & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} i_{L_{1}}(t) \\ i_{L_{2}}(t) \\ v_{C_{1}}(t) \\ v_{C_{2}}(t) \end{bmatrix} + \\ & \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_{\mathrm{dc}}(t) \\ i_{0}(t) \end{bmatrix} \circ$$
 (8)

式中 $i_{L_1}(t)$ 、 $i_{L_2}(t)$ 、 $v_{C_1}(t)$ 、 $v_{C_2}(t)$ 、 $V_{de}(t)$ 、 $i_0(t)$ 分别为电感电流、电容电压、直流链电压和输出电流随时间的变化量。

在非直通工作状态下,状态空间方程可写为

$$\hat{Fx} = A_2 x + B_2 u , \qquad (9)$$

即:

$$\begin{bmatrix} L_{1} & 0 & 0 & 0 \\ 0 & L_{2} & 0 & 0 \\ 0 & 0 & C_{1} & 0 \\ 0 & 0 & 0 & C_{2} \end{bmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \hat{i}_{L_{1}}(t) \\ \hat{i}_{L_{2}}(t) \\ \hat{v}_{C_{1}}(t) \\ \hat{v}_{C_{2}}(t) \end{bmatrix} = \\ \begin{bmatrix} -(R+r) & 0 & -1 & 0 \\ 0 & -(R+r) & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} i_{L_{1}}(t) \\ i_{L_{2}}(t) \\ v_{C_{1}}(t) \\ v_{C_{1}}(t) \\ v_{C_{2}}(t) \end{bmatrix} +$$

$$\begin{bmatrix} 1 & R \\ 0 & R \\ 0 & -1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} V_{dc}(t) \\ i_0(t) \end{bmatrix}^{\circ}$$

$$(10)$$

$$\Leftrightarrow \delta \Delta \mathbf{A} \mathbf{B} \text{ bh } (\widehat{\mathbf{h}} \widehat{\mathbf{h}} \widehat{\hat{\mathbf{h}} \widehat{\mathbf{h}} \widehat{\hat{\mathbf{h}} \widehat{\mathbf{h}} \widehat{\hat{\mathbf{$$

$$\boldsymbol{B}=D\cdot\boldsymbol{B}_1+(1-D)\cdot\boldsymbol{B}_2,$$

因此状态空间方程可写为

$$F\hat{x} = Ax + Bu \circ$$

引入如下状态变量、输入变量和直通占空比的小 信号扰动:

$$\overline{\mathbf{x}} = \begin{bmatrix} \overline{i}_{L_1}(t) & \overline{i}_{L_2}(t) & \overline{v}_{C_1}(t) & \overline{v}_{C_2}(t) \end{bmatrix}^{\mathrm{T}},$$
$$\overline{\mathbf{u}} = \begin{bmatrix} \overline{v}_{\mathrm{dc}}(t) & \overline{i}_{0}(t) \end{bmatrix}^{\mathrm{T}},$$

 $\bar{d}(t)$ 。 在加入小信号扰动后,系统的状态空间方程为

$$F\overline{\overline{x}} = \left[\left(D + \overline{d} \right) A_1 + \left(1 - D - \overline{d} \right) A_2 \right] (X + \overline{x}) + \left[\left(D + \overline{d} \right) B_1 + \left(1 - D - \overline{d} \right) B_2 \right] (U + \overline{u}) \circ \quad (11)$$

可改写为

(7)

$$\begin{split} \vec{Fx} = A\vec{x} + B\vec{u} + \left[\left(A_{1} - A_{2} \right) X + \left(B_{1} - B_{2} \right) U \right] \vec{d} = \\ \begin{bmatrix} -(R+r) & 0 & D-1 & D \\ 0 & -(R+r) & D & D-1 \\ 1-D & -D & 0 & 0 \\ -D & 1-D & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \vec{i}_{L_{1}}(t) \\ \vec{i}_{L_{2}}(t) \\ \vec{v}_{C_{1}}(t) \\ \vec{v}_{C_{2}}(t) \end{bmatrix} + \\ \begin{bmatrix} 1 & (1-D)R \\ 0 & (1-D)R \\ 0 & D-1 \\ 0 & D-1 \end{bmatrix} \begin{bmatrix} V_{dc}(t) \\ i_{0}(t) \end{bmatrix} + \begin{bmatrix} V_{C_{1}} + V_{C_{2}} - I_{0}R \\ V_{C_{1}} + V_{C_{2}} - I_{0}R \\ -I_{L_{1}} - I_{L_{2}} + I_{0} \\ -I_{L_{1}} - I_{L_{2}} + I_{0} \end{bmatrix} \vec{d}(t) \circ \quad (12)$$

令 $I_{11}=-I_{L_1}-I_{L_2}+I_0$, $V_{11}=V_{C_1}-V_{C_2}-I_0R$, 经过拉普拉斯变换, 由信号流图化简可得电容电压的表达式为

$$\overline{v}_{C_{1}}(s) = \frac{K_{1}(D-1) + (1-2D)(1-D)}{(K_{1}+1)\left[K_{1}+(1-2D)^{2}\right]} \cdot \overline{v}_{dc}(s) + \frac{(1-2D)(1-D)R + K_{2}(1-D)}{K_{1}+(1-2D)^{2}} \cdot \overline{i}_{0}(s) + \frac{(1-2D)V_{11} + K_{2}I_{11}}{K_{1}+(1-2D)^{2}} \cdot \overline{d}(s)_{\circ} \qquad (13)$$

式中: $K_1 = LCs^2 + (R+r)Cs$; $K_2 = Ls + R + r_{\circ}$

式(13)中,忽略v_{dc}和i_o的影响,则输出电容电 压对直通占空比的传递函数为

$$G_{vd} = \frac{\overline{v}_{C_1}}{\overline{d}} = \frac{LI_{11}s + (R+r)I_{11} + (1-2D)V_{11}}{LCs^2 + (R+r)Cs + (1-2D)^2} \quad (14)$$

取直流电压 V_{dc} =100 V, 电感 L=1 mH, 电容 C=800 μ F, 负载电阻 R_f =50 Ω , 电感串联电阻 r=0.1 Ω , 电容寄生电阻 R=0.2 Ω , 滤波电感 L_f =1 mH, 直通占 空比 D=0.25, 代入式(14)可得 G_{vd} 随电感和电容 变化的零极点轨迹, 分别如图 3 和图 4 所示。

由图 3 可以看出:随着电感取值逐渐增大,极点 位于左半平面,不断向实轴和虚轴靠近,这会增大系 统的阻尼,造成系统稳定时间延长,动态特性变差, 容易发生振荡;而零点慢慢向虚轴方向移动,加剧了 非最小相位特性造成的负冲。

由图 4 可以看出:随着电容取值的增大,系统零 点一直位于右半平面,不随着电容值的变化而产生移 动;系统的极点位于左半平面,随着电容取值增大逐 渐垂直向着实轴移动,系统固有频率降低,阻尼增大, 从而降低了超调量,但稳定时间和上升时间延长。

电容电压随电感和电容变化的响应曲线,分别如图5和6所示。

图 6 不同电容时电容电压响应曲线 Fig. 6 Voltage response curves with capacitance changes

由图 5 和图 6 可以看出,随着电感取值的增大, 电容电压振荡幅度加剧,而且上升时间和调节时间延 长;而随着电容取值的增大,系统的上升时间延长, 但系统的超调量降低。

由以上的分析可以看出,时域与频域仿真结果相 吻合。虽然较大的电感和电容可以在一定程度上减小 电压纹波,但是会造成非最小相位特性变差。因此在 参数的选取过程中,要综合考虑系统稳态性能和暂态 性能。

3 Quasi-Z 源逆变器空间矢量调制策略

3.1 Quasi-Z 源逆变器空间矢量调制原理

电压空间矢量合成图如图 7 所示。以第一扇区为 例,假设在一个开关周期 T中有效矢量 V_1 和 V_2 的作 用时间分别为 T_1 和 T_2 ,则传统零矢量 (V_0 、 V_7)作 用时间为 $T_0=T-T_1-T_2$ 。在传统的 SVPWM 调制方法里, 同一个桥臂上、下开关管的驱动信号是互补的,不能 同时导通;而 Quasi-Z 源逆变器中由于拥有特殊阻抗 源结构,使得同一桥臂上、下开关管能同时导通。在 不影响有效电压矢量 V_1 、 V_2 的作用时间 T_1 、 T_2 的基 础上,把直通零矢量合理地插入到传统零矢量当中。

假设插入直通时间为 T_{sh} ,则在Quasi-Z源的 SVPWM调制策略中,传统零矢量 $\overline{\nu}$ 的作用时间为

$$\overline{T}_0 = T_0 - T_{\rm sh \circ} \tag{15}$$

一个开关周期 T 表示为

$$T = T_1 + T_2 + \overline{T}_0 + T_{\rm sh \ \circ} \tag{16}$$

考虑到直通状态,可得参考电压表达式为

$$V_{\rm ref} = \frac{T_1}{T} V_1 + \frac{T_2}{T} V_2 + \frac{\overline{T}_0}{T} \overline{V} + \frac{T_{\rm sh}}{T} V_{\rm sh} \circ$$
(17)

由于传统零矢量 **v**和直通矢量 **V**_{sh} 对 **V**_{ref} 的合成 不产生影响,因此可以得到

$$\begin{cases} V_{\text{ref}} = \frac{T_1}{T} V_1 + \frac{T_2}{T} V_2, \\ T_1 = T \times \sqrt{3} \times \frac{|V_{\text{ref}}|}{V_{\text{in}}} \times \sin\left(\frac{\pi}{3} - \theta\right) = MT \sin\left(\frac{\pi}{3} - \theta\right), \\ T_2 = T \times \sqrt{3} \times \frac{|V_{\text{ref}}|}{V_{\text{in}}} \times \sin\theta = MT \sin\theta \, \circ \, \end{cases}$$

$$(18)$$

式中*M*为调制系数,且*M* = $\sqrt{3} |V_{\text{ref}}| / V_{\text{in}}$ 。

由以上分析可以得知,在保持时间 T₁和 T₂不变的前提下,改变开关管的切换时刻,可以把直通零矢量插入到传统零矢量中。这样既没有改变有效矢量的时间,又插入了直通零矢量,达到了升压的目的,从而有效地把 SVPWM 调制策略应用到了 Quasi-Z 源 逆变器中。

3.2 直通零矢量不同分配方式的 SVPWM

在实际应用中,为了能插入更多的零矢量,以达 到升压最大化并且不提高开关频率的目的,采用比 较多的 SVPWM 调制方法有如下两种:即将直通零 矢量平均分成 4 等份和 6 等份^[10]。以下标"+""-" 来区分上下桥臂的开关管,以*T*_a,*T*_b,*T*_c表示传统 SVPWM 的切换时间,以*T*_{a+},*T*_{b+},*T*_{b+},*T*_{c+}, *T*_{c-}表示插入直通零矢量后,Z源逆变桥三相导通和 关断的转换时间,则传统 SVPWM 开关管的切换时间 如下:

$$\begin{cases} T_{\rm c} = \frac{T_0}{4}, \\ T_{\rm b} = \frac{T_0}{4} + \frac{T_2}{2}, \\ T_{\rm a} = \frac{T_0}{4} + \frac{T_1}{2} + \frac{T_2}{2} \circ \end{cases}$$
(19)

传统零矢量每个周期重复 π/3,因此在一个开关 周期中的平均零状态占空比为

$$\frac{\hat{T}_0}{T} = \frac{1}{\pi/3} \int_0^{\frac{\pi}{3}} \left[1 - \frac{\sqrt{3}}{2} M \sin\left(\theta + \frac{\pi}{3}\right) \right] d\theta = 1 - \frac{3\sqrt{3}M}{2\pi} ,$$
(20)

式中介。为一个周期内传统零矢量平均作用时间。

1) 直通零矢量平均分成4等份的情形

如图 8 所示,在一个控制周期内,把直通零矢量 平均分成 4 等份(图中阴影部分),即 T_{sh}/4。直通 零矢量仅作用于传统零矢量与有效矢量状态切换瞬 间,每个周期直通4次。

由图 8 可以看出,调节直通占空比,可以改变 直通零矢量的作用时间,要达到直通零矢量全部代替 传统零矢量的目的,则需要 *T*₀/4−*T*_{sh}/4 ≥ 0,这时最 大直通占空比等于平均零状态占空比,这样能够实现 最大升压。

图 8 直通零矢量平均分成 4 等份时的矢量分配图

Fig. 8 Vector distribution graph for average dividing direct zero vector into four equivalent parts

开关管之间切换时间关系如下:

$$\begin{cases} T_{a+} = T_{a}, \\ T_{b+} = T_{b}, \\ T_{c+} = T_{c} - \frac{T_{sh}}{4}, \\ T_{a-} = T_{a} + \frac{T_{sh}}{4}, \\ T_{b-} = T_{b}, \\ T_{a} = T_{a} \circ \end{cases}$$
(21)

2) 直通零矢量平均分成6等份的情形

如图 9 所示,在一个控制周期内,把直通零矢量 平均分成 6 等份(图中阴影部分),即 *T*_{sh}/6。

T^{a-}	=====		==	===	-2	£-	5		:===	=	====	:=:	====
1 _{a+}		T						1					
$T_{b+}^{\flat-}$	<u> </u>		7 €.	===	FF.	F= 1	╞╪╴	ł	;====	F-	<u> </u>		
T_{p-}		<u> </u>		===	<u>EE</u>	<u> </u>	<u><u> </u></u>	5	===	Ē			
l _{c+}								1		Ļ		1	\overline{V}
	000	100		110	11	1	11	1	110		100	(00
	000	100	0	110	V	11	11	Ż	110	0	100	V	000

图 9 直通零矢量平均分成 6 等份时的矢量分配图

这种情况下的传统零矢量作用时间与传统 SVPWM 里一样,被均匀分配成每份时间为 $T_0/4$ 的 4 等份。从图 9 中可以看出,在逆变器开关状态切换 瞬间,开始插入直通零矢量,插入的直通零矢量在传 统零矢量的两边和两个有效矢量 V_1 、 V_2 之间。如果 要达到直通零矢量全部代替传统零矢量的目的,则需 要 $T_0/4-T_{sh}/3 \ge 0$,因此,此方法所能达到的最大直 通时间为 $3T_0/4$ 。

开关管之间切换时间关系如下:

4 控制与仿真分析

4.1 直流链电压的间接控制

采用间接控制方法的原理框图如图 10 所示。 通过采集直流电源 V_{dc} 和电容 V_{C1} 两端的电压,间 接推算出直流链电压。利用直流链电压和电容电压 的关系,经过 PI 调节得到直通占空比,再通过采用 SVPWM 方法控制开关管的导通与关断,从而达到对 整个逆变器进行控制的目的。这种方式操作简便,在 硬件上容易实现,应用非常广泛。

图 10 以直流源和电容电压为反馈的间接控制方式框图 Fig. 10 The picture of Indirect control with DC source and capacitor voltage as feedback

4.2 仿真分析

在给定参数: 直流电压 V_{dc} =100 V、电感 L=1 mH、电容 C=800 μF、负载电阻 R=50 Ω、滤波电感 L_{f} =1 mH、直通占空比 D=0.25、开关频率为 5 kHz 的 条件下,理论计算得出直流链电压

$$V_{in} = V_{dc} / (1 - 2D) = 200 \text{ V}$$

电容电压

 $V_{C_1} = (1-D)V_{dc}/(1-2D) = 150 \text{ V}_{\odot}$

1) 直通零矢量平均分成4等份的情形

由间接控制法控制的直流链电压和在逆变侧测 出的直流链电压分别如图 11a 和 11b 所示,电容电压 如图 11c 所示,电感电流如图 11d 和 11e 所示,相电 流总谐波畸变率如图 11f 所示。

2) 直通零矢量平均分成6等份的情形

由间接控制法控制的直流链电压和在逆变侧测 出的直流链电压分别如图 12a 和 12b 所示,电容电压 如图 12c 所示,电感电流如图 12d 和 12e 所示,相电 流总谐波畸变率如图 12f 所示。

由图 12 可知:间接控制得到的直流链电压和直接测量得到的直流链电压都为 200 V,电容 C_1 电压为 150 V,符合理论计算值。最大电感电流纹波值 $\Delta i_{L_{mum}}$ =3.04 A,相电流总畸变率为 3.22%。

采用 SVPWM4 和 SVPWM6 两种方法,所得到的最大直通占空比 D_{max} 、最大升压比 B_{max} 、最大电压增益 G_{max} 、开关切换次数 K、开关管电压应力 V_k 、最大电感电流纹波 $i_{L_{max}}$ 和相电流总谐波畸变率 THD 如表 1 所示。

表 1 不同插入方法下 Quasi-Z 源性能的比较

 Table 1
 Comparison of Quasi-Z source performance under different insertion methods

话人士士	参数										
捆八刀式 -	D_{\max}	$B_{\rm max}$	$G_{\rm max}$	K							
SVPWM4	$\frac{1-3\sqrt{3}M}{2\pi}$	$\frac{\pi}{3\sqrt{3}M - \pi}$	$\frac{\pi M}{3\sqrt{3}M - \pi}$	28							
SVPWM6	$\frac{3}{4} \left(1 - \frac{3\sqrt{3}M}{2\pi} \right)$	$\frac{4\pi}{9\sqrt{3}M - 2\pi}$	$\frac{4\pi M}{9\sqrt{3}M - 2\pi}$	36							
		参数	汝								
1田八刀式 -											
	$V_{\rm k}$	$\Delta i_{L_{\max}}$	THD								
SVPWM4	$\frac{V_{\rm k}}{\left(\frac{3\sqrt{3}G}{\pi} - 1\right)}V_{\rm dc}$	Δi _{Lmax} 较小	THD 较大								

由表1可以看出:采用SVPWM4要比采用 SVPWM6具有更高的电压增益和更小的开关电压应力,且在三相直通情况下开关切换次数较少。在相同 的直通占空比下,SVPWM6的一个开关周期内直通 次数多而且直通时间短,Quasi-Z源逆变器中元器件 的电压和电流响应速度快、波动小、可靠性高。采用 SVPWM6的相电流总谐波畸变率低,但最大电感电 流纹波较大。

5 结语

Quasi-Z源逆变器具有电容电压应力小的优势,

利用小信号模型分析了电感和电容变化对整个系统动态特性的影响,为Quasi-Z源逆变器参数的合理选取提供一定的依据。研究Quasi-Z源逆变器的SVPWM调制方法,对比了两种不同零矢量插入方式下的Z源性能。结果表明,采用SVPWM4调制方法实现简单,可以插入的直通时间更长,能达到更高的电压增益;而且在保持相同直通占空比的情况下,最大电感电流纹波比采用SVPWM6小,在一定程度上减小了电感体积,Z源性能指标更优。

参考文献:

- PENG F Z. Z-Source Inverter[J]. IEEE Transactions on Industry Applications, 2003, 39(2): 504–510.
- [2] 李圣清,白建祥,袁 黎,等.Z源逆变器直流侧电 压和 MPPT 的统一控制策略 [J]. 高压电器,2016, 52(1): 50-54,61.
 LI Shengqing, BAI Jianxiang, YUAN Li, et al. Unified Control Strategy of Z Source Inverter DC Side Voltage and MPPT[J]. High Voltage Apparatus, 2016, 52(1): 50-54,61.
- [3] TANG Y, XIE S J, ZHANG C H, et al. Improved Z-Source Inverter with Reduced Z-Source Capacitor Voltage Stress and Soft-Start Capability[J]. IEEE Transactions on Power Electronics, 2009, 24(2): 409–415.
- [4] 杨 亮,易吉良,李军军,等.T型Z源拓扑结构及 其性能研究[J].湖南工业大学学报,2015,29(4): 45-49.

YANG Liang, YI Jiliang, LI Junjun, et al. T-Z Source Topology Structure and Its Performance Research[J]. Journal of Hunan University of Technology, 2015, 29(4): 45-49.

[5] 顾 斌, 钱照明, 房绪鹏, 等. Z 源变频调速系统及

其空间矢量 PWM 控制方法 [J]. 电气传动, 2005, 35(5): 13-16.

GU Bin, QIAN Zhaoming, FANG Xupeng, et al. Z-Source Adjustable Speed Drive System and Its Space-Vector Pulse Width Modulation Strategy[J]. Electric Drive, 2005, 35(5): 13–16.

- [6] 杨旭红,杨峰峰,郭 凯,等.基于 SVPWM 和模糊 PI 参数自整定的 Z 源逆变器并网研究 [J]. 电机与控制 应用, 2017, 44(7): 59-65.
 YANG Xuhong, YANG Fengfeng, GUO Kai, et al. Research on Z Source Inverter Grid-Connected System Based on SVPWM and Fuzzy PI Control of Parameter Self-Adjustment[J]. Electric Machines & Control Application, 2017, 44(7): 59-65.
- [7] ALI U S. A Modified Maximum Power Point Tracking Control for Bi-Directional Z-Source DC-DC Converter Based Solar Electric Vehicle[J]. Applied Mechanics and Materials, 2015, 787: 828–832.
- [8] DONG S, ZHANG Q F, CHENG S K. Inductor Current Ripple Comparison Between ZSVM4 and ZSVM2 for Z-Source Inverters[J]. IEEE Transactions on Power Electronics, 2016, 31(11): 7592–7597.
- [9] LIUYS, GEBM, FERREIRAFJTE, et al. Modeling and SVPWM Control of Quasi-Z-Source Inverter[C]//11th International Conference on Electrical Power Quality and Utilisation. Lisbon: IEEE, 2011: 1–7.
- [10] 郭允丰,庄圣贤,贺永平.三相准Z源并网逆变器的 PWAM 控制研究 [J]. 电源学报,2016,14(2):89-94,111.

GUO Yunfeng, ZHUANG Shengxian, HE Yongping. Research on PWAM Control of Three-Phase Grid Connected Quasi-Z Source Inverter[J]. Journal of Power Supply, 2016, 14(2): 89–94, 111.

(责任编辑:邓光辉)