doi:10.3969/j.issn.1673-9833.2017.04.003

面齿轮磨削工艺参数优化的试验研究

刘金华,龙 誉,方曙光,明 瑞

(湖南工业大学 机械工程学院,湖南 株洲 412007)

摘 要:基于蝶形砂轮磨削正交面齿轮的正交试验,分析了面齿轮各磨削工艺参数,包括磨削深度 a_p、砂轮转速 v_s、刀具进给速度 v_w等,对表面粗糙度 R_a、磨削变质层深度 h 和磨除率 Z_w的影响规律,得到了磨削优化工艺参数。根据正交试验结果,利用回归分析方法分别建立了表面粗糙度 R_a、磨削变质层深度 h 和磨除率 Z_w的回归数学模型。试验结果表明,所求得模型具有良好的精度,可以为面齿轮磨削质量和效率的提高提供一定的理论依据。

关键词: 面齿轮磨削; 表面粗糙度; 变质层深度; 磨除率; 正交试验; 回归数学模型 中图分类号: TP273 文献标志码: A 文章编号: 1673-9833(2017)04-0014-06

An Experimental Study on the Optimization of Grinding Process Parameters of Face Gears

LIU Jinhua, LONG Yu, FANG Shuguang, MING Rui

(School of Mechanical Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China)

Abstract: Based on the orthogonal experiment of grinding orthogonal face gears with butterfly grinding wheel, an analysis has been conducted on such grinding parameters as grinding depth a_p , grinding wheel speed v_s , and the influence of tool feeding speed v_w on surface roughness R_a , grinding depth h and removal rate Z_w , thus obtaining the optimal grinding process parameters. According to the results of orthogonal test, the regressive mathematical models of grinding surface roughness R_a , metamorphic layer depth h and removal rate Z_w can be established by adopting regression analysis method. The results show which testifies the better precision of these models, thus providing some theoretical basis for the improvement of grinding gear quality and efficiency.

Keywords: face gear grinding; surface roughness; metamorphic layer depth; removal rate; orthogonal experiment; regressive mathematical model

1 研究背景

面齿轮传动是一种圆柱齿轮与圆锥齿轮啮合的

新型齿轮传动结构,具有结构简单、重合度大、传动稳定、质量轻和传动比较大等诸多优点。目前, 面齿轮传动在国外已经被广泛应用,如美国 NASA

收稿日期: 2017-05-20

基金项目:国家自然科学基金资助项目(51375161),湖南省自然科学基金资助项目(2015JJ5018, 2017JJ4023)

作者简介:刘金华(1964-),女,湖南南县人,湖南工业大学教授,主要从事数字化制造技术方面的教学与研究, E-mail: 540807051@qq.com

通信作者: 明 瑞(1992-),男,湖南株洲人,湖南工业大学教师,硕士,主要研究方向为数控技术, E-mail: 844153340@qq.com

(National Aeronautics and Space Administration)已 将面齿轮传动副成功地应用于直升机主减速器大功 率动力传动中,发挥了其独特的优越性¹¹。但是目前 国内面齿轮的加工精度不高且生产效率较低,从而制 约了面齿轮的发展和广泛应用。面齿轮精加工的主要 工艺是磨削加工,磨削加工质量会影响面齿轮的硬 度、表面粗糙度和使用寿命。因此,选择合理的磨削 工艺参数可以提高面齿轮质量和生产效率,从而对面 齿轮的应用有着重要作用。

W. Bouzid^[2] 通过优化高速切削工艺参数以提高 面齿轮加工效率; Ho W. H. 等^[3] 为降低面齿轮表面 粗糙度,运用正交试验和遗传算法,对工艺参数进行 了优化,从而使构造的数学模型对表面粗糙度值的预 报误差达到 4.06%; 张慧鹏^[4]利用 MATLAB 优化工 具箱,对无心磨削工艺参数进行了优化,以实现单位 时间内磨除率最大,得到了最佳的磨削参数,简化 了复杂的编程,提高了设计的效率和质量;丁军鹏^[5] 通过分析不同阶段主要磨削工艺参数的影响,对齿轮 不同磨削阶段的工艺参数进行了优化设计,建立了不 同阶段的优化目标函数,并运用 MATLAB 进行了优 化计算,获得了较好的磨削表面质量和较高的磨削 率,为生产效率和磨削质量的提高提供了理论依据; 戴娟等 6 就外圆磨加工外圆时的工艺参数优化问题 进行了讨论,将最优工艺参数的二维有约束的优化问 题转化为一维有约束优化求解,通过优化工艺参数, 在保证表面质量的前提下,降低了磨削加工成本。目 前,国内外对于面齿轮磨削工艺参数优化的研究相对 较少。

本文以面齿轮齿面粗糙度、轮齿变质层深度和单 位时间内磨除材料的体积(磨除率)作为评价磨削表 层性态和加工效率的主要指标,通过正交试验系统地 研究磨削工艺参数包括砂轮转速、磨削深度和刀具进 给速度对3个评价指标的影响规律,得到了面齿轮磨 削工艺参数优选组合方案,并建立了较为准确的评价 指标回归模型^[7],可为面齿轮精加工工艺提供一定的 理论参考。

2 面齿轮磨削试验条件与设计

2.1 磨削工艺条件

由于面齿轮的齿面是复杂曲面,在普通的磨床上 很难精确地完成其曲面的成型运动。因此,本文使 用五坐标数控磨齿机对外径为170 mm、内径为143 mm 的面齿轮进行精加工,采用300 mm 的普通碟形 砂轮展成磨削并且采用水基合成磨削液。面齿轮材料

选用 20CrMnTi, 其具体的几何参数如表 1 所示。 表 1 正交面齿轮几何参数

 Table 1
 Geometric parameters of orthogonal face gears

参 数	取值
齿数	86
模数 /mm	3.5
压力角 / (°)	20
轴夹角/(°)	90
顶隙系数	0.25
齿顶高系数	1.0
内半径/mm	143
外半径/mm	170

2.2 检测仪器与评价指标

1) 表面粗糙度 R_a

选用粗糙度轮廓测量仪 Hommel T8000 RC,对面齿轮齿面粗糙度 R_a 值进行测量。每次取样长度为 0.25 mm,检测距离为 2 mm,探针以 0.15 mm/s的速度移动,以 3 次测量值的平均值作为粗糙度的实际值^[8]。

2) 磨削变质层深度 h

为方便、精确地测量面齿轮样品硬度,选用全自动显微硬度计 LECO-AMH43 对面齿轮硬度进行测量,根据硬度的变化值,可得到变质层深度值。在试样表层加荷 4.8 N,加载时间为 13 s,以距离表层 0.1 mm 处为测量起点,每隔 0.2 mm 测量一次,将相同位置的 3 次测量结果平均便可得到硬度值^[77]。

3) 磨除率 Z_w

选用高精度的数显千分尺检测磨削厚度,在磨床 进给系统上安装定位块,通过进给数显系统,测量砂 轮磨除厚度,然后计算出磨除率^[7]。

2.3 磨削正交试验设计

影响面齿轮磨削表层性能和加工效率的因素很 多,需要选择合适的磨削工艺参数进行研究,以获得 较好的表层性能和较高的加工效率。本文选用 *a*_p(磨 削深度)、*v*_s(砂轮转速)和*v*_w(刀具进给速度)作 为试验的3个因素,将设备精度误差、磨削振动以及 冷却条件等因素视为通常水平;以*R*_a(表面粗糙度)、 *h*(磨削变质层深度)和*Z*_w(磨除率)为试验评价指标。 每个因素取3个水平值,试验的各因素及水平如表2 所示。

表 2 磨削正交试验因素和水平

Table	Pactors and levels of grinding orthogonal tests				
		因 素			
水平	磨削深度	砂轮转速	刀具进给速度		
	$a_{\rm p}$ /mm	$v_{\rm s}$ / (r•s ⁻¹)	$v_{\rm w}$ / (m•min ⁻¹)		
1	0.02	20	1.8		
2	0.06	40	3.6		
3	0.10	65	6.0		

由于多因素试验间的组合比较多,需要耗费大量的时间与经费,因此本试验选用 L₀(3³)正交表。根据表2的3因素、3水平,对面齿轮进行磨削试验,记录9组试验数据,如表3所示。

表 3 磨削正交试验数据

Table 3Orthogonal grinding test data

ゴル		因素	巨衣		评价指标	
瓜 迎	т	м	N	表面粗糙度	变质层深度	磨除率
ヨモリ	L	IVI	IN	$R_{ m a}/\mu{ m m}$	<i>h</i> /mm	$Z_{\rm w}/({\rm mm}^3 \cdot {\rm min}^{-1})$
1	1	1	1	0.546	0.057	0.237
2	1	2	2	0.442	0.063	0.249
3	1	3	3	0.372	0.088	0.285
4	2	1	2	0.571	0.108	0.488
5	2	2	3	0.474	0.132	0.505
6	2	3	1	0.425	0.120	0.497
7	3	1	3	0.630	0.199	0.766
8	3	2	1	0.657	0.222	0.791
9	3	3	2	0.581	0.251	0.817

注:表中L,M,N分别表示磨削深度、砂轮转速和刀具进给速度,下同。

3 面齿轮磨削正交试验分析与工艺参数优选

3.1 极差分析法

正交试验设计和分析方法大致分为2种:一种是 极差分析法,另一种是方差分析法。极差分析法简单 易懂,实用性强,在设计研究中得到了广泛应用^[9]。 下面通过极差分析法分别计算各因素对单一试验评 价指标的影响程度,即磨削深度 *a*_p、砂轮转速 *v*_s和 刀具进给速度 *v*_w分别对表面粗糙度 *R*_a、变质层深度 *h*和磨除率 *Z*_w的影响。

极差分析法的计算与判断,可直接在试验数据表3上进行。对表面粗糙度 *R*_a、磨削变质层深度 *h* 和磨除率 *Z*_w 3 个试验评价指标的极差计算结果和优选组合方案的选取,分别见表 4~6。

表 4	磨削表面粗糙度极差分析结果
-----	---------------

 Table 4
 Results of range analysis of grinding

 surface roughness
 Surface roughness

surface roughness				
<i>会 米</i> 府	因素			
多奴 -	L	М	Ν	
K_1	1.360	1.747	1.628	
K_2	1.470	1.573	1.594	
K_3	1.868	1.378	1.476	
k_1	0.453	0.582	0.543	
k_2	0.490	0.524	0.531	
k_3	0.623	0.459	0.492	
极差 R	0.170	0.123	0.051	
因素主次		$L \to M \to N$		
丰富组织库住水宁安	L_1	M ₃	N_3	
不凹怛怛皮饥匹刀杀	0.02	65	6.0	

以上各分析结果表中, *K_i*分别表示因素 *a_p*, *v_s*, *v_w*的第*i*(*i*=1, 2, 3)个水平所对应的评价指标值之 和, *k_i*为*i*水平的平均值。*R*为任一列因素的极差, *R*=max{*k*₁, *k*₂, *k*₃}-min{*k*₁, *k*₂, *k*₃},即同一列中 *k*₁, *k*₂, *k*₃ 这 3 个数中最大者减去最小者。

表 5 磨削变质层深度极差分析结果

 Table 5
 Results of range analysis of grinding metamorphic layer depth

会粉		因素	
参奴 -	L	М	Ν
K_1	0.208	0.364	0.399
K_2	0.360	0.417	0.422
K_3	0.672	0.459	0.419
k_1	0.069	0.121	0.133
k_2	0.120	0.139	0.141
k_3	0.224	0.153	0.140
极差 R	0.155	0.032	0.008
因素主次		$L \to M \to N$	
变质层深度优选方案	L_1	M_1	N_1
	0.02	20	1.8

表 6 磨削磨除率极差分析结果

Table 6	Results	of range	analysis	of grind	ling removal	l rate
		0-		- 0 -		

会 粘	因 素			
参 奴	L	М	Ν	
K_1	0.771	1.491	1.525	
K_2	1.490	1.545	1.554	
K_3	2.374	1.599	1.556	
k_1	0.257	0.497	0.508	
k_2	0.496	0.515	0.518	
k_3	0.791	0.533	0.519	
极差 R	0.534	0.036	0.011	
因素主次		$L \to M \to N$		
庭险应住进士安	L_3	M ₃	N_3	
磨际举饥远力杀	0.10	65	6.0	

各列的极差值不同,反映了因素水平的变化对试 验指标的影响程度。极差值越大,所对应的因素对试 验指标的影响越大,因此,可以依据极差值判断因素 的主次。

*k_i*值的大小反映了该因素各水平对试验指标的影响,用于判断因素水平的最优选组合方案。由于试验 评价指标 *R_a*和 *h*越小越好,所以应取各列中 *k_i*的最 小值所对应的水平;而试验指标 *Z_w*越大越好,故应 取各列中 *k_i*的最大值所对应的水平。

从表 4~6 的极差值大小顺序可看出,因素主次 是相同的,即对 R_a (表面粗糙度)影响最大的是 a_p (磨 削深度),其次是 v_s (砂轮转速),最不显著的是 v_w (刀 具进给速度)。

分析表 4 中的数据可以得出,在砂轮转速和刀具 进给速度不变的情况下,随着磨削深度的逐渐增大, 面齿轮的表面粗糙度逐渐增大,其原因是单颗磨粒的 最大切削厚度增大,导致齿轮磨削材料的塑性变形随 之增大,此时磨粒切削刃在齿轮表面的切痕深度增 加,从而使面齿轮表面变得更加粗糙。当磨削深度和 刀具进给速度不变时,随着砂轮转速的增大,面齿轮 的表面粗糙度随之减小。当磨削深度和砂轮转速不变 时,随着刀具进给速度的增大,面齿轮的表面粗糙度 随之变小。

根据同一列 k_i值的大小,选择对应的工艺参数 优选组合应为 L₁M₃N₃,这样的方案能保证面齿轮磨 削加工时具有良好的表面粗糙度。

由表 5 可知, 在砂轮转速和刀具进给速度不变 的情况下,随着磨削深度的增大,变质层深度增大。 在磨削深度和刀具进给速度不变的情况下,随着砂轮 转速的增大,变质层深度随之增大。在实际加工中, 应尽量减少或消除变质层,因此工艺参数优选组合应 为 L₁M₁N₁。

由表 6 可以得知,在砂轮转速和刀具进给速度不 变的情况下,随着磨削深度的增大,磨除率随之增大。 在磨削深度和刀具进给速度不变的情况下,随着砂 轮转速的增大,磨除率随之增大。由于磨除率直接 反映了加工的效率,因此工艺参数优选组合方案为 L₃M₃N₃。

3.2 综合平衡法

由 3.1 节中的极差分析法可知,3个因素 *a*_p, *v*_s, *v*_w 对各指标 *R*_a, *h* 和 *Z*_w 的影响程度不同。为了兼顾各个指标,找出使每个指标都尽可能好的试验条件,因此再采用综合平衡法^[10]进行分析。

1)确定评价指标集和影响函数集

以 R_a, h 和 Z_w 为评价指标集 U={X_{nn}},其中 m=1, 2,3 分别为表 2 中的 3 个因素, n=1,2,…,9 表示表 3 中的试验编号,各指标的评价集为 V={Y_{1n}, Y_{2n}, Y_{3n}}。

2)建立隶属函数

建立评价指标集 U 对评价集 V 的隶属函数,根据计算得出的隶属度值与该指标在综合评价中的重要程度相匹配。其中,表面粗糙度 R_a和变质层深度 h 为偏小型指标,磨除率 Z_w 为偏大型指标,因此建立隶属函数:

$$Y_{mn} = \frac{\max(X_{mn}) - X_{mn}}{\max(X_{mn}) - \min(X_{mn})}, \quad m=1, 2; \quad (1)$$

$$Y_{mn} = \frac{X_{mn} - \min(X_{mn})}{\max(X_{mn}) - \min(X_{mn})}, \quad m=3.$$
 (2)

3)确定权重分配集

为了反映各指标的重要程度,引入权重分配集 *A*={*r*₁, *r*₂, *r*₃}。在面齿轮磨削过程中,表面粗糙度的 重要程度较高,其权重 r₁ 取 0.4; 变质层深度对控 制磨削表面质量也有一定作用,其权重 r₂ 取 0.2; 磨 除率是保证生产效率的主因,其权重 r₃ 取 0.4。因此 *A*={0.4, 0.2, 0.4}。

设采用综合平衡法得到的综合评价指标集为 *P*={*T_n*},它反映各个指标的综合影响程度。

$$T_n = \sum_{i=1}^{3} r_i S_{mn} \quad (m = 1, 2, 3; n = 1, 2, ..., 9), \quad (3)$$

式中 Smn 表示各个试验指标的影响函数。

将表 3 中的各评价指标值代入式(3),得到磨 削综合评价指标值,如表 7 所示。

表 7 磨削综合评价指标值

Table 7 Comprehensive evaluation indicator values of grinding

计心护已		因 素		始入河丛北扫传
诋短骗亏	L	М	Ν	示合评价指标阻
1	1	1	1	0.355 8
2	1	2	2	0.503 8
3	1	3	3	0.601 1
4	2	1	2	0.441 2
5	2	2	3	0.564 4
6	2	3	1	0.637 0
7	3	1	3	0.356 3
8	3	2	1	0.311 9
9	3	3	2	0.406 7

对表 7 所示指标值进行极差分析,所得结果如表 8 所示。由表 8 所示因素主次可以得知,综合影响规 律与单因素的极差分析结果一致,即磨削深度 a_p 对 3 个评价指标都有较显著的影响。由综合平衡法极 差分析可得最终的优选方案为 $L_2M_3N_3$,即磨削深度 $a_p=0.06$ mm,砂轮转速 $v_s=65$ r/s,砂轮摆动进给速度 $v_w=6.0$ m/min。

表 8 综合平衡法极差分析结果

 Table 8
 Results of range analysis of integrated balance method

参 数	因素			
参 奴	L	М	Ν	
<i>K</i> ₁	1.460 7	1.153 3	1.304 7	
K_2	1.642 6	1.380 1	1.351 7	
K_3	1.074 9	1.644 8	1.521 8	
k_1	0.486 9	0.384 4	0.434 9	
k_2	0.547 5	0.460 0	0.450 6	
k_3	0.358 3	0.548 3	0.507 3	
极差 R	0.189 2	0.163 9	0.072 4	
因素主次		$L \to M \to N$		
优选方案		$L_2M_3N_3$		

4 面齿轮磨削试验指标的回归模型与 试验验证

4.1 建立面齿轮磨削试验指标的回归模型

采用建模方便、拟合精度较好的幂函数来建立回 归模型。对于粗糙度回归模型可设

$$R_{a} = c a_{p}^{k} v_{s}^{q} v_{w}^{t}, \qquad (4)$$
式中 c, k, q, t 为回归待定系数。

式(4)为非线性函数,将其两边同时取自然对数, 则变换为线性函数:

$$\ln R_{\rm a} = \ln c + k \ln a_{\rm p} + q \ln v_{\rm s} + t \ln v_{\rm w^{\circ}}$$
(5)

令 $\ln R_a=y$ 、 $\ln c=b_0$ 、 $\ln a_p=x_1$ 、 $\ln v_s=x_2$ 、 $\ln v_w=x_3$ 、 $k=b_1$ 、 $q=b_2$ 、 $t=b_3$,则对应的线性回归方程为

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 \circ \tag{6}$$

该线性方程共包含 x₁, x₂, x₃3 个自变量,试验结 果用 y 表示。考虑存在试验误差 ε,故由 9 组试验数 据可建立如下多元线性回归方程

$$\begin{cases} y_1 = b_0 + b_1 x_{11} + b_2 x_{12} + b_3 x_{13} + \varepsilon_1, \\ y_2 = b_0 + b_1 x_{21} + b_2 x_{22} + b_3 x_{23} + \varepsilon_2, \\ \vdots \end{cases}$$
(7)

$$y_9 = b_0 + b_1 x_{91} + b_2 x_{92} + b_3 x_{93} + \varepsilon_9 \circ$$

表示成矩阵方程的形式为

$$Y = Xb + \varepsilon, \qquad (8)$$

式中: Y为9组试验测量出的表面粗糙度的对数值组

成的矩阵,
$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_9 \end{bmatrix} = \begin{bmatrix} -0.605 \ 2 \\ -0.816 \ 5 \\ \vdots \\ -0.543 \ 1 \end{bmatrix};$$

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & x_{13} \\ 1 & x_{21} & x_{22} & x_{23} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{91} & x_{92} & x_{93} \end{bmatrix} =$$
$$\begin{bmatrix} 1 & -3.912 \ 4 & 2.996 \ 0 & 0.587 \ 8 \\ 1 & -3.912 \ 4 & 3.689 \ 3 & 1.281 \ 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & -2.302 \ 8 & 4.174 \ 8 & 1.281 \ 1 \end{bmatrix};$$
$$b = [b_0, b_1, b_2, b_3]^{\mathrm{T}};$$
$$\epsilon = [\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_9]^{\mathrm{T}} \circ$$

由最小二乘法可得

$$\boldsymbol{b} = \left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{Y} = \begin{bmatrix} 0.755\ 2\\ 0.183\ 6\\ -0.211\ 9\\ -0.083\ 7 \end{bmatrix} \circ (9)$$

根据式(9)可得 *c*=e^{0.7552}, *k*=0.1836, *q*=-0.2119, *t*=-0.0837, 代入式(4)得到的磨削表面粗糙度 *R_a*的回归模型为

$$R_{a} = e^{0.7552} a_{p}^{0.1836} v_{s}^{-0.2119} v_{w}^{-0.0837}$$
(10)

用同样的方法可求得变质层深度与磨除率的回 归模型:

$$h = e^{-0.916 \, 1} a_{\rm p}^{0.701 \, 2} v_{\rm s}^{0.216 \, 8} v_{\rm w}^{0.112 \, 9}, \qquad (11)$$

$$Z_{\rm w} = e^{0.9714} a_{\rm p}^{0.6849} v_{\rm s}^{0.0742} v_{\rm w}^{0.0457}$$
(12)

4.2 面齿轮磨削试验指标回归模型的试验验证

运用回归模型公式(10)~(12),分别对 R_a, h , Z_w 进行计算,产生最大误差时对应的试验编号和相应结果如表9所示。

表 9 最大误差时对应的回归计算值与试验值比较

Table 9Corresponding regression values compared with
the experimental ones with the maximum error

评价指标	试验编号	试验值	回归计算值	相对误差 /%
$R_{\rm a}$	6	0.425	0.499	17.4
h	6	0.120	0.147	22.5
$Z_{ m w}$	5	0.505	0.549	8.7

由表9可知,根据回归模型得到*R_a*,*h*,*Z_w*的计算 值与相应试验的测量值之间的最大相对误差值分别为 17.4%,22.5%,8.7%。误差产生的主要原因是磨削加 工面齿轮的过程比较复杂,回归模型只考虑了磨削工 艺中3个因素对指标的影响,并未考虑设备精度误差、 磨削振动以及冷却条件等因素的影响,但以上因素对 相对误差的影响不大。表9表明,由回归模型计算所 得结果的相对误差在合理范围内。因此,可利用回归 模型选择合理的磨削参数,以达到较好的表面磨削质 量和较高的磨削效率。

5 结论

1)通过对正交面齿轮的正交试验,获得了磨削 工艺参数对面齿轮磨削表面性态(*R_a*,*h*)和加工效率 (*Z_w*)的影响规律:影响最显著的因素是磨削深度 *a_p*,随着磨削深度的增加,上述3个评价指标值相应 增大。

2)通过运用综合平衡法的极差分析可得知:当 $a_p=0.06 \text{ mm}, v_s=65 \text{ r/s}, v_w=6.0 \text{ m/min} 时,面齿轮的$ 表面性态较好,并且磨削效率较高,即最佳工艺方案 $为<math>L_2M_3N_{3\circ}$

3)通过采用多元非线性回归分析法,分别建立 了 R_a (表面粗糙度)、h(变质层深度)和 Z_w (磨除率) 的回归模型。利用数学模型对 R_a ,h, Z_w 进行回归计算,

19

获得误差最大的试验号,将其与对应的试验测量值进行比较,相对误差值分别为17.4%,22.5%,8.7%,说明建立的回归模型的精度良好,可在磨削加工前利用该模型选择合适的磨削工艺参数,以提高面齿轮质量和生产效率。

参考文献:

- LITVIN F L, FUENTES A, ZANZI C, et al. Design, Generation, and Stress Analysis of Two Versions of Geometry of Face-Gear Drives[J]. Mechanism and Machine Theory, 2002, 37(10): 1179–1211.
- [2] BOUZID W. Cutting Parameter Optimization to Minimize Production Time in High Speed Turning[J]. Journal of Materials Processing Technology, 2005, 161(3): 388– 395.
- [3] HO W H, TSAI J T, LIN B T, et al. Adaptive Network-Based Fuzzy Inference System for Prediction of Surface Roughness in End Milling Process Using Hybrid Tagnchi-Genetic Learning Algorithm[J]. Export Systems with Applications, 2009, 36(2): 3216–3222.
- [4] 张慧鹏. 基于 MATLAB 的无心磨削参数工艺优化 [J]. 组合机床与自动化加工技术, 2009(10): 85-87.
 ZHANG Huipeng. Process Parameter Optimization of Centerless Grinding Based on MATLAB[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2009(10): 85-87.
- [5] 丁军鹏.齿轮成形磨削工艺参数优化及试验研究 [D]. 洛阳:河南科技大学,2011.
 DING Junpeng. Optimization and Experimental

Research on Gear from Grinding Process Parameters[D]. Luoyang: Henan University of Science and Technology, 2011.

- [6] 戴 娟,胡冠昱,高全芹.外圆磨磨削工艺参数的优 化设计 [J]. 机械设计与制造,2008(8):131-132.
 DAI Juan, HU Guanyu, GAO Quanqin. Optimization Design for the Craft Parameter of Cylindrical Grinder[J].
 Machinery Design & Manufacture, 2008(8): 131-132.
- [7] 龙 誉.面齿轮磨削工艺参数优化研究 [D]. 株洲:湖南工业大学,2016.
 LONG Yu. Optimization of the Technology Parameters of Face-Gear from Grinding[D]. Zhuzhou: Hunan University of Technology, 2016.
- [8] MING X Z, GAO Q, YAN H Z, et al. Mathematical Modeling and Machining Parameter Optimization for the Surface Roughness of Face Gear Grinding[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9/10/11/12): 2453-2460.
- [9] 杜金萍.基于模糊综合评价的磨削过程优化研究 [J]. 煤矿机械, 2008, 29(7): 55-57.
 DU Jinping. Research on Optimization of Grinding Process Based on Fuzzy Synthetic Evaluation[J]. Coal Mine Machinery, 2008, 29(7): 55-57.
- [10] 蒋大军.采用多元非线性回归预测钒钛烧结矿强度 [J]. 烧结球团, 2006, 31(2): 5-10.
 JIANG Dajun. Forecast of Vanadium-Titanium Sinter Strength with Multiple Nonlinear Regression[J]. Sintering and Pelletizing, 2006, 31(2): 5-10.

(责任编辑:邓光辉)