doi:10.3969/j.issn.1673-9833.2016.06.012

PHBV/PBAT 复合阻燃材料的燃烧性能、 力学性能及流变性能研究

易 爱,刘跃军

(湖南工业大学包装新材料与技术重点实验室,湖南 株洲 412007)

摘 要:采用熔融共混的方法,将MMT和聚磷酸铵基阻燃剂添加到PHBV/PBAT复合材料中,研究复合阻燃材料的力学性能、流变性能以及燃烧性能。极限氧指数和垂直燃烧结果表明,聚磷酸铵基阻燃剂的添加提高了复合材料的极限氧指数,MMT的加入使得极限氧指数进一步提高,当MMT的质量分数为1%时通过了UL-94 垂直燃烧 V-0 级别测试。结合流变性能测试与力学性能测试表明,聚磷酸铵基阻燃剂恶化了复合材料的力学性能,而MMT提高了粉体在基体材料中的分散性能,提高了复合阻燃材料的力学性能。 锥形量热测试表明,MMT的加入明显降低了复合材料的热释放速率以及产烟量。

关键词: PHBV; 燃烧性能; 力学性能; 流变性能

中图分类号: TQ320.4 文献标志码: A 文章编号: 1673-9833(2016)06-0061-08

Research on the Combustion Performance, Mechanical and Rheological Properties of PHBV/PBAT Flame Retardant Composites

YI Ai, LIU Yuejun

(Key Laboratory of New Materials and Technology for Packaging, Hunan University of Technology, Zhuzhou Hunan 412007, China)

Abstract : By adopting the method of melt blending, with an addition of MMT and ammonium-phosphate-based flame retardant to PHBV/PBAT composites, a research has been carried out on the combustion performance, mechanical and rheological properties of PHBV/PBAT composites. Results concerning the limiting oxygen index and vertical burning show that the ammonium-phosphate-based flame retardant helps to improve the limit oxygen index of the PHBV/PBAT composites, and the addition of MMT contributes to a further improvement of the limit oxygen index, followed by the V-0 level of UL-94 vertical combustion tested, with MMT 1% of the content. Experimental results of the rheological and mechanical properties show that the ammonium-phosphate-based flame retardant deteriorates the mechanical properties of the composites, while MMT helps to improve the dispersion properties of the powder in matrix materials, as well as the mechanical properties of the flame retardant composites. The cone calorimeter test shows that an addition of montmorillo-nite significantly decreases the heat release rate and the amount of smoke production of the composites.

Keywords : PHBV; combustion performance; mechanical property; rheological property

收稿日期:2016-09-23

基金项目:国家自然科学基金资助项目(11372108),湖南省自然科学基金资助项目(14JJ5021)

作者简介:易 爱(1989-),女,湖南衡阳人,湖南工业大学硕士生,主要研究方向为生物降解材料, E-mail: 1069279471@qq.com

通信作者:刘跃军(1970-),男,湖南株洲人,湖南工业大学教授,博士,主要从事功能包装材料方面的教学与研究, E-mail: yjliu 2005@126.com

0 引言

生物降解材料聚羟基丁酸戊酯 (poly (hydroxybutyrate-co-hydroxyvalerate), PHBV)是由植物、稻草、 淀粉等,经微生物发酵,合成碳源和能源,储存在 微生物体内的生物材料^[1]。PHBV 的刚性和气体阻隔 性能与聚丙烯 (polypropylene, PP)和聚酯 (polyethylene terephthalate, PET)相当,并且PHBV 可以完全生物降解为 CO₂和 H₂O,因此 PHBV 不会对 环境造成负面影响。但 PHBV 本身也存在一些缺点, 如热稳定性差、结晶速率低、结晶时间长、结晶度 低,这也是一直制约其发展的瓶颈,大大地影响了 其市场化推广应用进度^[2]。在 PHBV 中加入聚己二酸/ 对苯二甲酸丁二酯 (poly (butylene adipate-coterephthalate), PBAT)可以改善 PHBV 的结晶性能, 提高材料的加工和应用性能。

PHBV 可被用于制作一次性垃圾袋、购物袋、集装箱、纸张、建材家居装饰材料、地毯、包装袋以及堆肥袋等。在 PHBV 的这些应用中,必须提高其阻燃性能^[3]。应用于塑料中的阻燃剂种类繁多,其中卤素阻燃剂,添加少量就可以达到较好的阻燃效果^[4]。但是,卤素阻燃剂在燃烧过程中会释放出有毒、腐蚀性气体或者烟雾尘埃,污染环境且对人体有害^[5]。

聚磷酸铵基复合阻燃剂是一种复配阻燃剂,主 要通过凝聚相阻燃发挥阻燃作用,延缓或者中断燃 烧^[6]。聚磷酸铵基阻燃剂集酸源、碳源、气源于一体, 能够在聚合物的表面形成一层隔热、隔氧、抑烟和 抗熔滴的碳层结构^[7]。

将聚磷酸铵基阻燃剂添加到 PHBV/PBAT 复合材 料中,复合材料的氧指数可以得到较大提高。但是 在燃烧的过程中,添加聚磷酸氨基阻燃剂后的 PHBV/PBAT 复合材料还有熔滴滴落现象,而且其力 学性能下降。将有机改性蒙脱土(montmorillonite, MMT)加入 PHBV/PBAT 聚磷酸氨基复合材料中, MMT 能够改善聚磷酸铵基阻燃剂恶化 PHBV/PBAT 复合材料力学性能的现象,并大大降低聚合物的热 释放速率,而且纳米 MMT 能够改善聚合物的机械性 能^[8]。所以添加 MMT,不仅可以提高材料的阻燃性 能,而且可以改善复合材料的机械性能。

1 实验部分

1.1 实验原料

PHBV, EM944I, 密度为1.33 g/cm³, 结晶度为12%, 德国巴斯夫公司;

PBAT, Ecoflex C1200, 密度为1.25~1.27 g/cm3,结

晶度为30%,德国巴斯夫公司;

聚磷酸铵 (ammonium polyphosphate, APP), 工 业级, 纯度为 96%, 合肥精汇化工研究所;

三聚氰胺(melamine, MEL),分析纯,纯度为 99.5%,天津科密欧化学试剂有限公司;

季戊四醇 (pentaerythritol, PER),分析纯,纯度为99.5%,天津科密欧化学试剂有限公司;

蒙脱土,DK4,纯度为98%,株洲时代新材料科 技股份有限公司。

1.2 主要设备

电热鼓风干燥箱,WGL-125B型,天津市泰斯特 仪器有限公司生产;

真空干燥箱, DZ-2BC Ⅱ型, 上海实验仪器厂有限公司生产;

电子天平, JA2003型, 上海舜宇恒平科学仪器 有限公司生产;

高速混料机, SHR-10A型, 张家港格兰机械有限公司生产;

双螺杆挤出机, Brabender PLD-651型, 德国 Brabender 公司生产;

注塑机,HTF90WE型,宁波海天集团股份有限 公司生产;

微机控制电子万能试验机,CMT 6104型,深圳 新三思材料检测有限公司生产;

塑料摆锤冲击试验机,501B-4型,深圳万测试 验设备有限公司生产;

旋转流变仪, ARex2000型, 美国 TA 仪器公司 生产;

氧指数仪,C01型,南京上元分析仪器有限公司 生产;

垂直燃烧仪,CZF-4型,南京上元分析仪器有限 公司生产;

锥形量热仪(cone calorimeter test, CCT), FTT0007型,南京上元分析仪器有限公司生产。

1.3 材料的制备

第一步, 先将粒料 PHBV 和 PBAT 放在鼓风干燥 箱中于 70 ℃下干燥 12 h, 然后将 PHBV 与 PBAT 按照 80:20 的质量比混匀, 用挤出机挤出造粒, 放在干燥 箱内在 60 ℃下干燥 12 h; 第二步, 制备复配聚磷酸 铵基阻燃剂, 将 APP、MEL 和 PER 放在真空干燥箱 内在 70 ℃下干燥 12 h, 然后按照 25:5:6 的质量比混合 均匀, 备用; 第三步, 制备复合阻燃体系, 将 MMT 在 70 ℃下干燥 12 h, 然后将 PHBV/PBAT 复合材料粒 料、复配的聚磷酸氨基阻燃剂和 MMT 按照不同的比 例高速物理混合均匀。在文中, PHBV/PBAT 复合材 料标记为PL,复配的聚磷酸氨基阻燃剂标记为PFR, 各物料的质量比例如表1所示。

表 1 PHBV/PBAT/PFR/MMT 复合阻燃材料的配比及命名 Table 1 Formulation and naming of

	PHBV/PBAT/IFF	R/MMT compose	sites %
编号	P L	PFR	MMT
PM-0	100	0	0
PM-1	90	10.0	0
PM-2	90	9.5	0.5
PM-3	90	9.0	1.0
PM-4	90	7.0	3.0
PM-5	90	5.0	5.0

1.4 表征测试

材料的拉伸性能参照GB/T1040.2—2006测试,拉 伸速率为2 mm/min;弯曲性能参照GB/T9341—2008 测试,夹头下降速率为2 mm/min;冲击性能按照GB/ T1043—2008测试。

材料的流变测试温度设定为 180 ℃,测试剪切 储能模量 G'、剪切损耗模量 G''的扫描频率范围为 0.1~100 rad/s,测试剪切黏度 η 的剪切速率扫描范围 为0.1~100 s⁻¹。

静态燃烧测试分为水平垂直燃烧测试和氧指数 测试。水平垂直燃烧测试采用水平垂直燃烧测试仪, 参照标准UL94—2014;氧指数测试采用氧指数测试 仪,参照标准ISO4589—2实行。

动态燃烧测试采用锥形量热测试仪,参照标准 ISO5660—1。

2 结果与讨论

2.1 力学性能分析

图 1a为 PHBV/PBAT 复合阻燃材料的拉伸强度与断裂伸长率曲线,图 1b为 PHBV/PBAT 复合阻燃材料的弯曲强度和冲击强度曲线。

由图 1a 可知,添加聚磷酸铵基阻燃剂的 PHBV/ PBAT 的复合材料的拉伸强度仅 28 MPa,断裂伸长率 接近于 0。当 MMT 添加质量分数为 0.5% 时,PHBV/ PBA 复合阻燃体系的拉伸强度达到了 50 MPa,断裂 伸长率增加到 3.0%,弯曲强度和冲击强度增加的速 率最高。再增加蒙脱土的含量,各项指标增加的速 率反而降低。当 MMT 的添加质量分数为 1.0% 时, PHBV/PBA 复合阻燃体系的拉伸强度为 53 MPa,断 裂伸长率增加到 5.0%。当 MMT 的添加质量分数为 3.0% 时,拉伸强度基本不变,断裂伸长率反而大幅 度增加,这也说明 PHBV/PBAT 复合阻燃材料的韧性 随着 MMT 添加量的增加而改善。总的来说,MMT 的加入能够改善因聚磷酸铵基阻燃剂恶化 PHBV/ PBAT 复合材料的力学性能,达到了预期的效果^[9]。 这是因为 MMT 提高了复合材料中粉体在基体材料 中的分散性能,减少了粉体颗粒之间发生团聚的现 象,同时也增加了复合体系中粒子粉末与基体的相 容性能^[10]。

Fig. 1 Mechanical properties of PHBV/PBAT flame retardant composites

2.2 流变性能分析

为了研究蒙脱土与聚磷酸铵基阻燃剂对 PHBV/ PBAT 复合材料力学性能影响的内在原因,结合流变 性能测试来分析研究蒙脱土与聚磷酸铵基阻燃剂对 PHBV/PBAT 复合材料力学性能影响的演变过程。图 2 为 PHBV/PBAT 复合阻燃材料的储能模量(storage modulus, *G*')和损耗模量(loss modulus, *G*")。

储能模量 G'和损耗模量 G"是弹性和黏性的具体表现形式,储能模量 G'代表形变过程中系统储存外界能量的能力,损耗模量 G"代表形变过程中系统需要消散的能量^[12]。从图 2 可以看出,加入有机改性蒙脱土之后,储能模量 G'和损耗模量 G"都有所增加,这是因为加入的蒙脱土是一种纳米离子,能够增加两相之间的结合力^[11]。储能模量 G'和损耗模量 G"的增加也说明了 PHBV/PBAT 复合阻燃材料的弹性和黏性增加,这也进一步说明 MMT 能够达到改善因聚磷酸铵基阻燃剂恶化 PHBV/PBAT 复合阻燃材料

图 2 PHBV/PBAT 复合阻燃材料的储能模量和损耗模量 Fig. 2 Storage modulus and loss modulus of PHBV/PBAT flame retardant composites

图 3 为 PHBV/PBAT 复合阻燃材料的损耗因子 (loss factor, tan δ)和 vGp(van Gurp-Palmen)曲线 图。损耗因子代表了聚合物在频率扫描下对黏弹性 的响应行为。tan δ 为1时出现聚合物黏弹性的转折 点,对应的频率为转变点频率,这个点即为黏弹性 转折点;当tan δ 大于1时,整个复合体系表现为黏 性占优势的响应行为;当tan δ 小于1时,整个复合 体系表现为弹性占优势的响应行为^[13]。

由图 3a 可知, PM-1 没有黏弹性转折点。当MMT 的添加量为 0.5%, 1.0%时, PM-2、PM-3 的 tan δ曲线 慢慢靠近黏弹转折点。PM-1、PM-2和 PM-3 的损耗 因子都大于 1,说明它们都是呈现黏性占优势的行 为。当 MMT 的添加质量分数为 3.0%, 5.0%时,复合 体系出现了黏弹性转折点,随着频率的增加,体系 由 黏性行为转变为弹性性能。这也进一步说明, MMT 的加入能够改变复合体系的黏弹性,改善力学 性能。

图 3b 为复合材料的 vGp 曲线图。vGp 曲线是说 明聚合物黏弹性的一种有效方法。当 δ 为0时,体系 属于纯的弹性体,当 δ 为 π /2 时,体系属于纯的黏性 体^[14]。由图可知,PM-1、PM-2 和 PM-3 的值靠近于 π /2,体系属于黏性占优势。随着复数黏度的增加, PM-4、PM-5 出现了黏弹性转变的现象。

图 3 PHBV/PBAT 复合阻燃材料的损耗因子和 vGp 曲线 Fig. 3 Loss factors and vGp curves of PHBV/PBAT flame retardant composites

图 4 为 PHBV/PBAT 复合阻燃材料的复数黏度和 剪切黏度。

图 4 PHBV/PBAT 复合阻燃材料的复数黏度和剪切黏度 Fig. 4 Complex viscosity and shear viscosity of PHBV/PBAT flame retardant composites

图4a为复合阻燃材料的复数黏度,由图可知,随着 MMT 的增加,复合材料的复数黏度呈现增加的趋势。图4b为复合阻燃材料的剪切黏度,由图可知,随着 MMT 含量的增加,复合体系的剪切黏度呈现增加的趋势,说明 MMT 的加入有利于复合体系剪切黏度的增加。这是因为添加的 MMT 能够提高复合材料粉体在基体材料中的分散性能,减少颗粒之间发生团聚的可能性^[15]。PM-1、PM-2和 PM-3 的剪切黏度随着剪切速率的增加而呈现下降的变化趋势,这就是"剪切变稀"的现象。这说明 MMT 的加入能够降低体系的剪切黏度,减少复合材料高温时的流动性能,增加复合材料的摩擦性能,复合材料的加工性能得到了有效的改善。

图5是PHBV/PBAT复合阻燃材料在温度为180℃, 频率为0.1 Hz时,动态黏弹性行为的应变扫描。动态 黏弹性是聚合物材料在交变应力的作用下所表现出 来的力学响应行为^[16]。

图 5 PHBV/PBAT 复合阻燃材料的模量与应变关系 Fig. 5 The relationship between modulus and strain of PHBV/ PBAT flame retardant composites

由图 5 可知,在整个应变扫描范围内,随着 MMT 含量的增加,复合阻燃材料的储能模量 G'和损耗模 量 G"随之增加。当应变在 0.1%之前,储能模量 G' 和损耗模量 G"不随应变的增加而改变,表现出典型 的线性黏弹性行为。随着 MMT 含量的增加,复合阻 燃材料线性区域减小,当应变增加到一定程度时,体系的储能模量 G'和损耗模量 G"逐渐下降,应变越大,模量下降得越明显,这种现象叫做 Payne效应^[17],随着 MMT 含量的增加,复合阻燃材料的 Payne效应增加。这是因为添加纳米级别的有机改性 MMT,能够降低复合体系中粒子粉末的团聚,同时也增加了粒子粉末与聚合物基体的相容性。

2.3 静态燃烧性能分析

表 2 为 PHBV/PBAT 复合阻燃材料的静态燃烧性 能测试结果,由表2可知,PM-0的氧指数(limit oxygen index,LOI)为18%,空气中氧浓度为21%,这说明 PHBV/PBAT 复合材料在空气中就可以燃烧旺盛, PM-1的阻燃性能得到了提高,达到了V-1级别,LOI 为29%,但是在燃烧过程中有熔滴滴落,而且滴落的 熔滴能够引燃脱脂棉。添加质量分数为1.0%的MMT 时,熔滴滴落的现象得到了缓解,而且燃烧的级别达 到了V-0级别,LOI达到了最大值,为36%,燃烧性 能得到改善。当MMT添加质量分数为3.0%时,LOI 呈现下降的趋势,这是因为无机纳米 MMT 的大量存 在,反而会降低复合阻燃材料中聚磷酸铵基阻燃剂 在燃烧过程中形成的炭层结构,影响炭层的致密性 和强度^[18]。

表 2 PHBV/PBAT/PFR 阻燃体系静态燃烧性能分析

Table 2An analysis of the static combustion of PHBV/PBATflame retardant composites

Sample	t_1/s	t_2/s	$t_{\rm f}/{\rm s}$	dripping	ignite cotton	UL-94 rate	LOI/%
PM-0	7	16	112	Yes	Yes	NR	18
PM-1	0	1	5	Yes	No	V-1	29
PM-2	0	1	3	No	No	V-0	32
PM-3	0	1	6	No	No	V-0	36
PM-4	0	1	8	No	No	V-0	35
PM-5	1	2	12	No	No	V-1	33

2.4 动态燃烧性能分析

图 6 为 PHBV/PBAT 复合阻燃材料的热释放速率 (heat release rate, HRR)曲线图。热释放速率是指单 位面积样品释放热量的速度。在燃烧过程中 HRR 随 着时间动态变化,其最大值即为峰值热释放速率^[19]。

由图 6 可知, PM-0 点燃之后, 热释放速率峰值 达到了 373 MJ/m²。HRR 峰值越大, 说明更多的热量 被传递到了材料的表面, 增加了材料的热裂解速率, 产生更多的挥发性可燃物。PM-1 的热释放速率峰值 为 313 MJ/m², 其值明显降低了。这是因为加入了聚 磷酸铵基阻燃剂后, 通过聚磷酸铵、三聚氰胺以及 季戊四醇共同作用, 形成了 P-N-C 结构, 发挥阻燃 作用,降低了体系热释放速率。加入 0.5% 的纳米级 有机改性的蒙脱土后,体系的热释放速率继续降低, 峰值为 199 MJ/m²,当蒙脱土的质量分数为 1.0% 时, 体系的热释放速率峰值降为 192 MJ/m²,而且达到热 释放速率峰值所需要的时间延长,这说明纳米级的 有机蒙脱土能够提高复合阻燃体系的热稳定性能, 降低体系的热释放速率,而且可以避免系统热量的 集中释放,发挥凝聚相阻燃作用,再增加纳米级的 有机改性蒙脱土的含量,体系的热释放速率峰值反 而增加,这说明一定量的蒙脱土含量能够与聚磷酸 铵基阻燃剂一起发挥阻燃作用,增加系统的热稳定 性能,继续增加蒙脱土的含量反而会影响复合体系 的热稳定性能和阻燃作用。

图 6 PHBV/PBAT 复合阻燃材料热释放速率曲线 Fig. 6 Curves of the heat release rate of PHBV/PBAT flame retardant composites

图 7 为 PHBV/PBAT 复合阻燃材料的总热释放 (total heat release, THR)曲线图。总释放热是指单 位面积的材料从开始到结束所释放的热量, THR 越 大,复合材料在燃烧过程中释放的热量越多,火灾 危险系数越大。

Fig. 7 A total heat release of PHBV/PBAT flame retardant composites

从图 7 可以看出, PM-0 的 THR 最大, 加入聚磷酸铵基阻燃剂之后的 PHBV/PBAT 复合阻燃材料的 THR 明显降低。当蒙脱土的添加质量分数为0.5%时, PHBV/PBAT 复合阻燃材料的总热释放延缓,当蒙脱 土的添加质量分数为1.0%时,总热释放值降低,这 也进一步说明将纳米级有机改性蒙脱土加入 PHBV/ PBAT 聚磷酸铵基复合阻燃材料中,能够降低体系热 量释放,延缓和抑制基材的热降解。进一步增加纳 米级有机改性蒙脱土的添加质量分数,并不能降低 体系的热释放。

图 8 为 PHBV/PBAT 复合阻燃材料的生烟速率 (smoke produce rate, SPR)曲线图。生烟速率是指单 位质量的样品裂解所产生的烟尘质量^[20]。评价复合 阻燃材料的阻燃性能的好坏,还需要检测复合阻燃 材料在燃烧过程中生烟速率,生烟速率的大小也是 预测火灾危害性的重要参数之一。

图 8 PHBV/PBAT 复合阻燃材料的生烟速率曲线 Fig. 8 Curves of the smoke produce rate of the PHBV/PBAT flame retardant composites

由图 8 可以看出, PM-0 的 SPR峰值为0.05 m²/s, 加入聚磷酸铵基阻燃剂的 PHBV/PBAT 复合阻燃材 料的 SPR峰值为0.04 m²/s, SPR值降低了 20%。加入 0.5% 的 MMT 后,体系的 SPR峰值降为0.026 m²/s, 相比于 PHBV/ PBAT 复合材料降低了 48%。这表明 聚磷酸铵基阻燃剂能够降低体系的生烟速率,加入 MMT 后, MMT 与聚磷酸铵基阻燃剂能够更好地降 低复合体的生烟速率,从而降低火灾的危险系数。 当蒙脱土的添加质量分数超过 1.0% 后,体系的生烟 速率在前期进一步降低,这说明 MMT 能够抑制烟 量的生成。

图 9 为 PHBV/PBAT 复合阻燃材料的烟生成量 (total smoke release, TSR)曲线图。烟生成量是指在 燃烧过程中单位样品面积累积生烟总量。在火灾中 烟生成量越多,对人体的危害越大,影响人的视线, 因此降低烟生成量也至关重要^[22]。

从图 9 中可以看出,加入聚磷酸铵基阻燃剂的复合材料的烟生成量相比于 PHBV/PBAT 复合材料降低了 24%。加入蒙脱土后,复合阻燃材料的烟生成量继续降低,当蒙脱土的添加质量分数超过 1.0% 时,烟 生成量增加。体系中蒙脱土含量增加,聚磷酸铵基 阻燃剂的含量降低,阻燃性能反而降低,适量的蒙脱土能够抑制烟生成量,过量的蒙脱土反而不能够与聚磷酸铵基阻燃剂发挥更好的阻燃作用。

表 3 为 PHBV/PBAT 复合阻燃材料的锥型量热测 试结构的主要数据表。从表中可以得知, PHBV/ PBAT复合材料的点燃时间(time to ignition, TTI)最 小。点燃时间是指使材料表面出现持续发光火焰时 所需要的时间,TTI越长,表明聚合物材料在燃烧过 程中不易被点燃,材料的阻火性能就越好^[23]。加入 聚磷酸铵基阻燃剂之后,TTI为115 s,相比于没有 添加阻燃剂的PHBV/PBAT复合材料的点燃时间增 加,再加入MMT,点燃时间继续增加,当MMT的 质量分数为1.0%时,点燃时间达到了最大值,为149 s,点燃的难度更大。加入聚磷酸铵基阻燃剂能够降 低体系的热释放和烟生成,但是却增加了CO的释放 量,CO的释放量也反映了火灾的危险性,加入MMT 之后,CO的释放量降低,进一步说明MMT与聚磷 酸铵能够形成一种稳定的阻燃结构,可降低火灾危 险性。

	表3 PHBV/PBAT复行	合阻燃材料锥型量热测试主要数据
Table 3	Test results of cone calorin	meter for PHBV/PBAT flame retardant composites

Sample	点燃时间 TTI/s	热释放速率 HRR/ (kW・m ⁻²)	质量损失速率 MLR/ (g・s ⁻¹)	CO 产率 / (kg・kg ⁻¹)	CO ₂ 产率 / (kg・kg ⁻¹)	总热释 THR/ (MJ・m ⁻²)	总发烟 TSR/ (m ² ·m ⁻²)
PM-0	89	141 ^a 373 ^b	15.27 ^a 38.52 ^b	0.013 ^a 2.6 ^b	1.49 ^a 115.15 ^b	82.6	422.2
PM-1	115	134 ^a 313	8.65 ^a 23.86 ^b	$0.019 4^{a}$ 3.493 6 ^b	1.22ª 108.7 ^b	62.4	324.0
PM-2	123	96ª 199 ^b	6.57 ^a 15.89 ^b	$0.019 \ 00^{a}$ 2.233 8 ^b	1.19 ^a 98.39	58.1	280.8
PM-3	149	66 ^a 192 ^b	6.3 ^a 20.88 ^b	$0.014 5^{a}$ 1.199 4 ^b	0.04 ^a 95.32 ^b	35.2	215.0
PM-4	121	100.4 ^a 236.44 ^b	6.33 ^a 18.87 ^b	$0.013 2^{a}$ $0.947 4^{b}$	1.31 ^a 112.66 ^b	63.8	435.6
PM-5	110	116.3 ^a 254.38 ^b	7.18 ^a 18.84 ^b	$0.009 4^{a}$ 7.403 9 ^b	1.34 ^a 168.21 ^b	66.3	480.8

注: ^a为6 min内的平均值, ^b为峰值。

3 结论

1)添加聚磷酸铵基阻燃剂的PHBV/PBAT复合材料的氧指数得到很大的提高,燃烧级别达到了V-1级,但是在燃烧的过程中,还有一定的熔滴滴落,而且复合材料的力学性能下降。

2)添加MMT之后,复合材料的力学性能得到了 很大程度的完善,当蒙脱土的质量分数增加到1.0% 时,拉伸强度、弯曲强度和冲击强度增加速率达到 最大,再增加蒙脱土的含量,增加的幅度变缓。

3)添加 MMT 后,复合阻燃材料的阻燃性能得 到了进一步的提高,燃烧级别达到了 V-0级,LOI为 36%,同时也缓解了熔滴滴落的现象,降低了熔滴引 燃的危害。添加 1.0% 的蒙脱土与聚磷酸铵基阻燃剂 能够达到较好地协助阻燃 PHBV/PBAT 复合材料的作 用,既能够明显地提高复合材料的阻燃性能,又能 够改善无机聚磷酸铵基阻燃剂恶化复合材料力学性 能的现象。

参考文献:

- MOFOKENG J P, LUYT A S. Morphology and Thermal Degradation Studies of Melt-Mixed Poly(Lactic Acid) (PLA)/Poly(*e*-Caprolactone) (PCL) Biodegradable Polymer Blend Nanocomposites with TiO₂ as Filler[J]. Polymer Testing, 2015, 45(10): 3812–3824.
- [2] 伍文宗,孙 鹏,石 璞. 气泡液膜界面法制备纳米级 碳酸氢钠[J]. 湖南工业大学学报, 2016, 30(4): 41-47. WU Wenzhong, SUN Peng, SHI Pu. Preparation of Nano-Sized Sodium Bicarbonate Utilizing Bubble Liquid Membrane Interfaces[J]. Journal of Hunan University of Technology, 2016, 30(4): 41-47.
- [3] WANG S, SONG C, CHEN G, et al. Characteristics and

Biodegradation Properties of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Organophilic Montmorillonite (PHBV/ OMMT) Nanocomposite[J]. Polymer Degradation & Stability, 2005, 87(1): 69–76.

- [3] SURYANEGARA L, NAKAGAITO A N, YANO H. The Effect of Crystallization of PLA on the Thermal and Mechanical Properties of Microfibrillated Cellulose-Reinforced PLA Composites[J]. Composites Science & Technology, 2009, 69(7/8): 1187–1192.
- [4] 周 涛,段 昊,唐文江,等.混合纳米SiO₃和纳米TiO₂ 颗粒在添加FCC的流态化研究[J].湖南工业大学学报, 2014, 28(4): 1-7.
 ZHOU Tao, DUAN Hao, TANG Wenjiang, et al. Mixed SiO₃ and Nano TiO₂ Particles in Adding FCC Fluidized Research[J]. Journal of Hunan University of Technology, 2014, 28 (4): 1-7.
- [5] FERREIRA B M P, ZAVAGLIA C A C, DUEK E A R. Films of PLLA/PHBV: Thermal, Morphological, and Mechanical Characterization[J]. Journal of Applied Polymer Science, 2002, 86(11): 2898–2906.
- [6] MATHEW A P, OKSMAN K, SAIN M. The Effect of Morphology and Chemical Characteristics of Cellulose Reinforcements on the Crystallinity of Polylactic Acid[J]. Journal of Applied Polymer Science, 2006, 101(1): 300–310.
- [7] CIOUCY, LISY, WUTM. Morphology and Degradation Behavior of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Layered Double Hydroxides Composites
 [J]. European Polymer Journal, 2014, 59: 136-143.
- [8] TEN E, JIANG L, WOLCOTT M P. Crystallization Kinetics of Poly(3-Hydroxybutyrate-Co-3- Hydroxyvalerate)/ Cellulose Nanowhiskers Composites[J]. Carbohydrate Polymers, 2012, 90(1): 541-550.
- [9] WANG D Y, LEUTERITZ A, WANG Y Z, et al. Preparation and Burning Behaviors of Flame Retarding Biodegradable Poly(Lactic Acid) Nanocomposite Based on Zinc Aluminum Layered Double Hydroxide[J]. Polymer Degradation & Stability, 2010, 95(12): 2474–2480.
- [9] GELFER M Y, SONG H H, LIU L, et al. Effects of Organoclays on Morphology and Thermal and Rheological Properties of Polystyrene and Poly(Methyl Methacrylate) Blends[J]. Journal of Polymer Science B: Polymer Physics, 2003, 41(1): 44–54.
- [10] MIAO L, QIU Z, YANG W, et al. Fully Biodegradable Poly(3-Hydroxybutyrate-Co-Hydroxyvalerate)/Poly (Ethylene Succinate) Blends: Phase Behavior, Crystallization and Mechanical Properties[J]. Reactive & Functional Polymers, 2008, 68(2): 446-457.
- [11] PILLA S, KIM S G, AUER G K, et al. Microcellular Extrusion Foaming of Poly(Lactide)/Poly(Butylene Adipate-Co-Terephthalate) Blends[J]. Materials Science & Engineering C, 2010, 30(2): 255-262.

- [12] QUERO E, MULLER A J, SIGNORI F, et al. Isothermal Cold-Crystallization of PLA/PBAT Blends with and Without the Addition of Acetyl Tributyl Citrate[J]. Macromolecular Chemistry & Physics, 2012, 213(1): 36-48.
- [13] 唐义祥,梁多平,楼白杨.聚丁二酸丁二醇酯/聚羟基烷酸酯熔融共混物的结晶及流变力学行为[J].高分子材料科学与工程,2012(6):28-31.
 TANG Yixiang, LIANG Duoping, LOU Baiyang. The Crystallization and Rheological Mechanical Behavior of Poly (Butyl Diacid Butyl Glycol Ester/Poly Hydroxy Alkyl Esters Melting Blend[J]. Polymer Materials Science and Engineering, 2012(6):28-31.
- [14] LIK, PENG J, TURNG L S, et al. Dynamic Rheological Behavior and Morphology of Polylactide/Poly(Butylenes Adipate-co-Terephthalate) Blends with Various Composition Ratios[J]. Advances in Polymer Technology, 2011, 30(2): 150-157.
- [15] 曾春霞,杨文斌,徐建锋.竹粉/低密度聚乙烯复合材料的动态流变行为[J].南京林业大学学报:自然科学版,2014(1):110-114.
 ZENG Chunxia, YANG Wenbin, XU Jianfeng. The Dynamic Rheological Behavior of Bamboo Powder/Ldpe Composite [J]. Journal of Nanjing Forestry University: Natural Science Edition, 2014(1): 110-114.
- [16] TAKASE H, MORITA K, SHIBITA A, et al. Polymer Networks Prepared From 4-Arm Star-Shaped L-Lactide Oligomers with Different Arm Lengths and Their Semi-Interpenetrating Polymer Networks Containing Poly(L-Lactide)[J]. Journal of Polymer Research, 2014, 21(11) : 1–10.
- [17] CHOW W S. Polyamide Blend-Based Nanocomposites: A Review[J]. Express Polymer Letters, 2015, 9(3): 211– 232.
- [18] OZKOC G, KEMALOGLU S. Morphology, Biodegradability, Mechanical, and Thermal Properties of Nanocomposite Films Based on PLA and Plasticized PLA
 [J]. Journal of Applied Polyer Science, 2009, 114(4): 2481-2487.
- [19] NAR M, STAUFENBERG G, YANG B, et al. Osteoconductive Bio-Based Meshes Based on Poly(Hydroxybutyrate-Co-Hydroxyvalerate) and Poly(Butylene Adipate-Co-Terephthalate) Blends[J]. Materials Science & Engineering C: Materials for Biological Applications, 2014, 38(1): 315–324.
- [20] TAO J, SONG C J, CAO M F, et al. Thermal Properties and Degradability of Poly(Propylene Carbonate)/ Poly(β -Hydroxybutyrate-co- β -Hydroxyvalerate) (PPC/ PHBV) Blends[J]. Polymer Degradation & Stability, 2009, 94(4) : 575–583.

(责任编辑:申 剑)