基于 PDMS 改性聚氨酯弹性体的合成与表征

李 化,张继德,孙世东

(湖南工业大学 绿色包装与生物纳米技术应用省重点实验室,湖南 株洲 412007)

摘 要:以异佛尔酮二异氰酸酯和异佛尔酮二胺为硬链段,聚四氢呋喃多元醇及端羟基聚二甲基硅烷为软段,采用溶液聚合法合成了一系列含不同质量分数 PDMS 的聚氨酯弹性体。通过傅里叶红外光谱、差示扫描量 热法及广角 X 射线散射等对聚氨酯的形态结构和相分离进行了表征与分析。结果表明,在聚氨酯主链中引入 PDMS 链段有利于相分离程度的提高。通过凝胶色谱试验、拉伸试验及水接触角测试等,研究了 PDMS 质量分数的增加对聚氨酯弹性体分子量、形态结构和力学性能的影响。结果表明,随着 PDMS 质量分数的增加,聚氨酯弹性体的分子量减小,膜的拉伸强度降低,涂膜表面接触角增加。当 PDMS 占软段的质量分数从 0 增加至 25% 时,聚氨酯的拉伸强度从 7.57 MPa 下降到 0.64 MPa,接触角从 72°增大至 95°以上。

关键词:有机硅;聚氨酯;相分离;PDMS;弹性体 中图分类号:TO317.9 文献标志码:A 文章编号:1673-9833(2010)06-0023-04

The Synthesis and Characterization of PDMS-Based Modified Polyurethane Elastomer

Li Hua, Zhang Jide, Sun Shidong

(Key Laboratory of Green Packing and Biological Nanotechnology of Hunan Province, Hunan University of Technology, Zhuzhou Hunan 412007, China)

Abstract: A series of polyurethane elastomer with varying proportion of polydimethylsiloxane were synthesized based on isophorone diisocyanate, isophorone diamineas as the hard segments and polytetrahydrofuran glycol, polydimethylsiloxaneas as the soft segments. The polymers morphology and microphase separation of the series of polyurethane were investigated by fourier transfer infrared spectroscopy, X-ray diffraction and differential scaning calorimetry. The results show that phase separation increases with increasing of PDMS. The molecular weight, mechanical and surface property of the polyurethane with different PDMS contents were studied by gel permeation chromatography, tensile test and contact angle test. The results show that the mecular weight and tensile strength decrease with increasing of PDMS, and the surface contact angle increases with increasing of PDMS. When the content of PDMS increases from 0 to 25%, the tensile strength decreases from 7.57 MPa to 0.64 MPa and the surface contact angle increases from 72° to above 95° .

Keywords: silicone; polyurethane; biomedical material; phase separation; PDMS; elastomer

0 引言

聚氨酯材料具有优异的物理及力学性能、良好的 生物相容性,并且性能可调、易加工,因而使得它在 医学领域得到了广泛应用。为了进一步提高聚氨酯的 生物相容性,满足临床需要,研究者们对其进行了许 多改性工作[1-6]。

在合成聚氨酯改性材料时,一般是以二苯基甲烷 二异氰酸酯(4,4'-diphenylmethane diisocyanate, MDI) 等芳香族的异氰酸酯与聚醚多元醇反应生成预聚物, 然后以小分子二醇或二胺为扩链剂来合成聚氨酯。然 而对芳香族聚氨酯的降解产物可能会产生对人体有害

收稿日期:2010-09-22

通信作者: 李 化(1983-), 男, 湖南邵阳人, 湖南工业大学硕士生, 主要研究方向为生物材料, E-mail: wccht163@163.com

的芳胺,因此芳香族聚氨酯在作为生物医用材料的使 用方面受到了一定的限制。为解决这一问题,本文试 图采用聚四氢呋喃多元醇(polytetramethylene ether glycol,简称PTMO)、异佛尔酮二异氰酸酯(isophorone diisocyanate,简称IPDI)和异佛尔酮二胺(isophorone diamine,简称IPDA)等为基本原料,合成脂肪族的聚 氨酯,并在聚氨酯主链中引入端羟基聚二甲基硅烷 (Polydi-methylsiloxane,简称PDMS),以对聚氨酯进 行有机硅改性,并研究PDMS对聚氨酯力学性能、相 分离程度及表面性能等方面的影响。

1 试验部分

1.1 试验原材料与处理

PTMO,分子量为2000,工业品,天津石油化工 第三石油化工厂生产,并在100℃条件下真空干燥4h, 备用。PDMS,分子量为2000,工业品,迈图高新材 料集团生产,并在100℃条件下真空干燥4h,备用。 有机锡催化剂,分析纯,天津大茂化学试剂厂生产。

IPDI和IPDA,工业品,拜尔化学集团公司生产; 乙酸乙酯(ethyl acetate,简称EA),分析纯,西陇化 工股份有限公司生产;N,N-二甲基甲酰胺(N,N-dimethyl formamide,简称DMF),分析纯,天津市大茂化 学试剂厂生产;以上试剂均脱水蒸馏后备用。

1.2 聚氨酯的合成与处理

以IPDA, IPDI为硬段, PTMO, PDMS为软段, EA, DMF为溶剂,采用传统的两步法合成聚氨酯,合成方 法如下:向装有冷凝器、温度计和搅拌器的250 mL四 口烧瓶中加入计量的PTMO和PDMS;再加入计量的 IPDI、催化剂和溶剂EA,搅拌均匀,升温至75°,反 应3h后冷却至室温,即可得到以异氰酸酯基为端基 的聚氨酯预聚体。向另一装有冷凝器、恒压滴液漏斗、 温度计和搅拌器的250 mL四口烧瓶中加入计量的扩链 剂IPDA和溶剂DMF,搅拌混合均匀。在室温下将上 述预聚体慢慢滴加到扩链剂溶液中,滴加完后升温至 50°条件下反应1h,即得到PDMS改性的聚氨酯溶液。 再将聚氨酯溶液挥发干燥成膜,然后置于50°真空烘 箱中处理24h,即得试验用聚氨酯膜。

通过改变 PDMS 的添加质量,合成一系列硬段质量分数为 25% 的有机硅改性聚氨酯。聚氨酯试样中, PDMS 占软段的质量分数分别为 0,5%,10%,15%,20%, 25% 时,聚氨酯弹性体的编号分别为 PU-0, PU-5, PU-10, PU-15, PU-20, PU-25。

1.3 分析测试仪器与方法

采用美国 Waters 公司生产的 1515 型凝胶色谱仪 (gel permeation chromatography,简称 GPC)测试所制 得聚氨酯的分子质量。

采用美国热电尼高力仪器公司生产的Nicolet-380 型傅里叶变换红外光谱仪测试聚氨酯的红外光谱。

采用深圳新三思公司生产的 CMT4104 微机控制型 电子万能拉力试验机,按 GB/T 1040-92 测定聚氨酯膜 的拉伸强度和断裂伸长率。

采用美国 TA 公司生产的型号为 Q200 差示扫描量 热法(differential scanning calorimetry,简称 DSC)分析 仪,在氮气保护下将试样先快速冷却至 -100 ℃,再以 20°/min 的升温速度进行测试。

采用德国 Dataphysic 仪器公司生产的 OCA20 型视频光接触角测量仪测定聚氨酯的水滴法接触角。

采用德国布鲁克公司生产的 D8-Advanced 型 X 射 线粉末衍射仪分析聚氨酯的广角 X 射线散射(wide angle X-ray diffraction,简称 WAXD)。

2 结果与讨论

2.1 PDMS 改性聚氨酯的合成与表征

图1为经PDMS改性后的聚氨酯的红外光谱图。

由图1可看出, PU-5,PU-10,PU-15,PU-20和PU-25 号PDMS改性聚氨酯的红外谱图分别在1016 cm⁻¹和804 cm⁻¹处出现了吸收峰,这分别为Si-O-Si键的伸缩 振动峰和Si-CH₃键的伸缩振动峰;并且,这2个吸 收峰的强度均随着 PDMS质量分数的增加而增强,这 表明 PDMS已经聚合到聚氨酯分子链中。图1中,1716 cm⁻¹处出现的吸收峰为C=O的伸缩振动峰,1675 cm⁻¹ 处出现的吸收峰为C=O形成氢键后的伸缩振动峰^[7]。 由图1可以看出,当聚氨酯弹性体中引入PDMS后,在 1635 cm⁻¹处出现了一个宽的吸收峰,表明了C=O氢 键伸缩振动峰向低波方向频移。因为C=O形成氢键 绝大部分发生在硬段与硬段之间,C=O氢键吸收峰的 频移表明了硬段和硬段间作用力增强,即聚氨酯主体 引入 PDMS后相分离程度提高^[8]。

图 2 所示为 PDMS 改性后聚氨酯的 DSC 测试结果。

图 2 PDMS 改性聚氨酯的 DSC 测试结果

Fig. 2 DSC thermograms of polyurethanes based on PDMS

根据文献[9],改性前的聚氨酯在-112 ℃和-8 ℃ 处出现了2个玻璃化转变温度。-112℃处对应重复的 --Si(CH,),O--链段玻璃化转变温度;-8℃处对应与 PDMS 末端羟基连接基团的玻璃化转变温度。由于聚 氨酯硬段相中短链序列不同,导致其在 DSC 曲线上呈 现出多个吸热峰[10]。从图2可以看出,上述聚氨酯弹 性体系列都在 50 ℃和 110 ℃左右出现了一个玻璃化转 变温度,分别对应硬段中的氨酯键和脲键的玻璃化转 变温度^[4]。随着 PDMS 添加量的增大,聚氨酯在 50 ℃ 区域处玻璃化转变温度稍微降低,而在110 ℃区域处 玻璃化转变温度稍微升高,表明在聚氨酯弹性体中, 软链段相和硬链段相混合程度逐渐降低,硬段间相互 作用增大,相分离程度提高[11]。

图 3 为 PDMS 改性聚氨酯的 WAXD 分析曲线。

Fig. 3 WAXD profiles of polyurethanes based on PDMS

从图 3 可以看出,以不同质量分数 PDMS 改性的 聚氨酯弹性体的 WAXD 分析曲线大约在 20°时都有 一个散射峰。这是因为, 当高聚物微晶尺寸接近入射 线波长时, 衍射线条宽化, 随着微晶尺寸的减小, 衍 射线条越来越弥散。由图3还可以看出,聚氨酯弹性 体中的PMDS添加质量分数在5%~20%时,20°处的散 射峰比纯聚氨酯弹性体 WAXD 要尖锐,其中 PU-5, PU-15 的尤为尖锐,这表明,当 PMDS 的添加质量分 数在5%~15%时,聚氨酯弹性体的微晶尺寸最大,硬 链段相和软链段相分离效果较好[12]。

2.2 PDMS 改性聚氨酯涂膜性能分析

表1所示为聚氨酯的分子量、拉伸强度及断裂伸 长率随 PDMS 添加质量分数变化的结果。

表1 PDMS 改性聚氨酯的力学性能和分子量

Table 1 The molecular weight and property of 4S

polyurethanes based on PDI

样品编号	力 学 性 能		またパブロ し
	拉伸强度 /MPa	断裂伸长率 /%	平均分子量/(g·mol ⁻¹)
PU-0	7.57	1 109	45 985
PU-5	2.88	950	40 374
PU-10	1.65	623	38 813
PU-15	1.42	612	34 408
PU-20	1.22	510	26 973
PU-25	0.64	656	25 374

从表1可看出,随着PDMS添加质量分数的增大, 聚氨酯的平均分子量逐渐减少。这可能是因为非极性 PDMS 与极性的聚氨酯溶度参数相差较大,两者相容 性较差,导致在聚氨酯链段中引入 PDMS 较困难的缘 故[13-14]。由表 1 还可看出,随着 PDMS 添加质量分数 的增加,聚氨酯膜的拉伸强度逐渐降低。这可能有两 方面原因,一方面是聚氨酯分子量降低的缘故;另一 方面,尽管PDMS对聚氨酯的相分离起到促进作用,但 是随着 PDMS 链段的增加,非极性的 PDMS 链段与氨 酯键及脲键等极性链段之间的相互作用力减弱,从而 使得聚氨酯的柔顺性能增加,故其力学性能下降。

图 4 所示为以不同质量分数 PDMS 改性的聚氨酯 接触角测试结果。

the content of PDMS in soft segments

由图4可看出,随着PDMS添加质量分数的增大, 改性聚氨酯表面的接触角从72°逐渐增大至95°以 上。这是因为 PDMS 链段具有低表面能的特性,在聚 氨酯成膜过程中,随着溶剂的挥发,聚二甲基硅氧烷 链段会向表面迁移,并富集在聚氨酯表面,从而使得 聚氨酯的表面能降低,其表面的接触角增大。

3 结论

1)在聚氨酯主链中引入 PDMS 链段,有助于相分 离程度的提高。

2)随着 PDMS 添加质量分数的增加,聚氨酯在 50 ℃区域处玻璃化转变温度稍微降低,而在 110 ℃区域 处玻璃化转变温度稍微升高;在 20°处的散射峰变得 尖锐;随着聚氨酯中 PDMS 添加质量分数的增加,聚 氨酯的平均分子量减小,膜的拉伸强度降低,断裂伸 长率增加,接触角增大。

3)当PDMS的添加质量分数从0增加至25%时, 聚氨酯的拉伸强度从7.57 MPa下降到0.64 MPa;聚氨 酯表面的接触角从72°增大至95°以上。当PDMS添 加质量分数在5%~15%时,聚氨酯弹性体具有良好的 相分离性能、力学性能及疏水性能,即综合性能较好, 有利于提高材料的抗凝血效果,从而提高聚氨酯的生 物相容性,可望用于生物医学材料。

参考文献:

- Wang F, Ji Q, McGrath J E. Synthesis and Characterization of Poly (Dimethyl Siloxane) Modified Polyurethane[J]. Polym. Prep., 1997, 38(1): 308–316.
- [2] Darren J Martin, Laura A, Poole Warren. Polydimethylsiloxane/Polyether-Mixed Macrodiol-Based Polyurethane Elastomers: Biostability[J]. Biomaterials, 2000, 21: 1021– 1029.
- [3] Rebeca Hernandez, Jadwiga Weksler, Ajay Padsalgikar, et al. Microstructural Organization of Three-Phase Polydimethylsiloxane-Based Segmented Polyurethanes[J]. Macromolecules, 2007, 40: 5441–5449.
- [4] Rebeca Hernandez, Jadwlga Weklser, Ajay Padsalgika, et al. A Comparison of Phase Organization of Model Segmented Polyurethanes with Different Intersegment Compatibilities
 [J]. Macromolecules, 2008, 41: 9767–9776.
- [5] 冯林林,张兴元,戴家兵,等,有机改性聚氨酯的合成和 表面性能[J].高分子材料科学与工程,2007,23(3):47-52.

Feng Linlin, Zhang Xingyuan, Dai Jiabing, et al. Synthesis and Surface Properties of Dihydroxybutyl Terminated-Polydimethylsiloxane Modified Polyurethane[J]. Polymer Materials Science & Engineering, 2007, 23(3): 47-52.

- [6] 魏 文,程为庄.血液相容性及表面改性的研究[J].高分子通报,2004(5):39-43.
 Wei Wen, Cheng Weizhuang. Study on Blood-Compatibility and Surface Modification[J]. Polymer Bulletin, 2004(5):39-43.
- Seymour R W, Estes G M, Cooper S L. Infrared Studies of Segmented Polyurethan Elastomers. I. Hydrogen Bonding[J]. Macromolecules, 1970, 3(5): 579–583.
- [8] 陈 雷,余学海,杨昌正.聚硅氧烷聚脲多嵌段共聚物中 氢键的研究[J].高分子学报,1996(2):129-134.
 Chen Lei, Yu Xuehai, Yang Changzheng. Studies on the Hydrogen-Bond in the Polysiloxane-Polyurea Block Copolymers[J]. Acta Polymerica Sinica, 1996(2): 129-134.
- [9] Koberstein J T, Galambos A F. Compression-Molded Polyurethane Block Copolymers. I. Microdomain Morphology and Thermomechanical Properties[J]. Macromolecules, 1992, 25: 5618-5631.
- [10] Pathiraja A Gunatillake, Gordon F Meijs, Simon J Mccarthy, et al. Poly (Dimethylsiloxane)/Poly (Hexamethylene Oxide) Mixed Macrodiol Based Polyurethane Elastomers. I. Synthesis and Properties[J]. Journal of Applied Polymer Science, 2000, 76: 2026–2048.
- [11] Hesketh T R, Van Bogart J W C, Cooper S L. Differential Scanning Calorimetry Analysis of Morphological Changes in Segmented Elastomers[J]. Polymer Engineering and Science, 1980, 20(3): 190–197.
- [12] 张晓华,曹 亚. 软段对IPDI基透明聚氨酯弹性体微相结构与性能的影响[J]. 中国塑料, 2005, 19(8): 27-31.
 Zhang Xiaohua, Cao Ya. Effect of Soft Segment on Microphase Structure and Propeties of IPDI Based Transparent Polyurethane Elatomer[J]. China Plastics, 2005, 19(8): 27-31.
- [13] Sheth J P, Yilgor E, Erenturk B, et al. Structure-Property Behavior of Poly (Dimethylsiloxane) Based Segmented Polyurea Copolymers Modified With Poly (Propylene Oxide)
 [J]. Polymer, 2005, 46: 8185-8192.
- [14] Yilgor I, Shaaban A K, Steckle W P, et al. Segmented Organosiloxane Copolymers. I. Synthesis of Siloxane-Urea Copolymers[J]. Polymer, 1984, 25: 1800–1812.

(责任编辑:廖友媛)