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B E 5 (histogram of oriented gradient, HOG ) +
SZHem s L (support vector machine, SVM ) | HJZF
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Backbone Neck Detect
1 YOLO-SPRL M#&£#
Fig. 1 YOLO-SPRL network structure
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Fig.2 Principle of SPD-Conv
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Fig. 3 Schematic diagram of detection layer
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RCM itk (WL 4) FE@L P AT &
J1#L (residual cross-attention, RCA ) I AJ 2% ] [
FEAR A RCHERILR S5 B0 e A% L RS 0 14 % L b 2 1)
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PRAJRIBRARAE b, LATRI PR BA 42 JR bR 35 R B 4
o WA, AaitiE— S Z)2EAHL (multilayer
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Fig. 4 Components of RCM
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Fig.5 Principle of LSKA
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LABEER 771 sk st bR R, AFEIRAE . M
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Fig. 6 Example from custom dataset
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HEBGE G ATRE BRI B, AT
XS YOLO AR TR L IPAl, 25 2R sk
1. BT HAD H AR AR, YOLOVSn &
Anchor-Free HLifil . C2EHTHU RN REAS I 3k 45 Je 404
TER IS ( mAP@0.5 Fl mAP@0.5:0.95 (B)) |3

B, R AR TRMRAITH 2% (GFLOPs ) |
TENG L SRR Z MBS T RaF-Fdr, JF B R
FASEIUARRD b P TR RGN B , F25 SR AR BT K
B, A5 YOLOVSn 1 Ay by df 43 25 A SRR,
A LA R 735 73 107 P 37 5 X R TR S P R o
PERI R
F1 YOLO RIIEBIMEEEITLL
Table 1 Comparative data of YOLO models

Fi7E mAP@0.5/% mAP@0.5:0.95 (B)/% GFLOPs/10°
YOLOV5n 33.05 19.44 72
YOLOv6n 30.59 18.01 11.9
YOLOvSn 34.69 20.40 8.2
YOLOV9n 32.32 18.97 7.9
YOLOV10n 34.49 20.15 8.4

3.3 HRAXIR

T YOLOVS8n, RIKBIA 4 54, SPD-
Conv, P2, RCM Fll LSKA. k56 il &3 He i i 37
TURR R AROR, #-7 T —RINEM T . i 58
W BAEMFIREEASE N7, DL mAP VE AL O AN
fabm, FEAN BRI b e Ie 45 R AN SR 2~3 iR,
2% 2~3 I, FIrg ] AR 2024 R AR R 1k BB A ol 1E.
g, R T B A AP, SPD-Conv J2 2
filt, RS PR AL T R T SR Y R B R AR 1A
P2 X/ H AR G S T 8CR f ok % . RCM iR
EFHIE LG BE A, R g AR T T 2 RERIGE ) .
LSKA fER “MEgeBhifeds” |, iy Rz k4
Ji B RS, BRAKGBIT P AR AR R T, A S TR
SRR SRRy 2B/, (A24i2 4
AEHALFE T YOLOvSn 54 5eiifb i, HEAe kG A i

(mAP@0.5 fil mMAP@0.5:0.95 (B) ) 7 i+

34 ETHIMEMHEBHHFR

T IR S 38015 B 5 ( gradient-weighted class
activation mapping, Grad-CAM ) J&—Fl f T vl ¥
fb CNN P B2 1 S R R, LM i A 2R s
POTEL, B R AEUINAT: 55 v i G 1 X3
U K A o — T AR AR, T I H AR A
B BARE, BRI G AR AR
iz il Grad-CAM # 7 K 53 #r 5 I K 22 AH 45 65 10 T
2, BT IS BT A R TR 4 A B AR i
BORJETIFAHT, SR 7~8 fis. B, #iskds
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X355 .
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Table 2 Ablation study data from the VisDrone dataset Table 3 Ablation study data from the custom dataset
SPD-Conv P2 RCM LSKA mAP@0.5/% mAP@0.5:0.95 (B)/% SPD-Conv P2 RCM LSKA mAP@0.5/% mAP@0.5:0.95 (B)/%

34.69 20.40 31.29 15.54

vV 36.72 2243 v 35.30 16.48

VARV 37.86 23.03 VARV 37.97 17.21

vV VARV 38.62 23.33 vV VvV 40.22 17.48

Vv 38.14 23.17 V4 42.94 19.23

vV vV 37.92 22.89 v VvV 45.88 18.22

\YARRV4 37.34 22.50 VARV 44.49 18.65

vV 35.24 20.80 vV 35.49 16.74

vV 35.28 21.05 vV 4131 17.29

vV v VvV 38.91 23.62 v VvV VvV 48.40 18.11

aﬁ) J5 YOLOvS8n o b) A
7 BHFIRERLE VisDrone HiRE LM R—8 RS MHHEITEE

Fig.7 Heatmap comparison of the same complex scene before and after model improvement from the VisDrone dataset
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B # ) E X LE
Fig. 8 Heatmap comparison of the same complex
garbage scene before and after model improvement from

the custom dataset
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Improved YOLOVS Structure for Detecting Small Garbage Objects and Its

Performance Validation

HE Dawei, WU Yuezhong, CHEN Lingjiao, HAN Mei

( School of Transportation and Electrical Engineering, Hunan University of Technology, Zhuzhou Hunan 412007, China )

Abstract: To address the challenges in garbage detection in complex urban environments, particularly the difficulties
caused by small target sizes and cluttered backgrounds, an improved algorithm named YOLO-SPRL is proposed for
small target garbage detection based on YOLOVS. First, the SPD-Conv module is incorporated and a P2 detection layer
is added while the PS5 detection layer is removed to enhance the detection capability for small garbage objects. Second, a
rectangular self-calibration module (RCM) is integrated into the P3 layer of the feature pyramid to suppress background
noise and eliminate interference from complex backgrounds. Finally, a learnable separable kernel attention (LSKA) module
is introduced in the model’ s neck, which reduces computational complexity while strengthening deep feature fusion
capability. This optimization reduces model size while maintaining improved accuracy, laying the theoretical groundwork
for deployment on embedded devices. Experiments on the VisDrone and custom street view garbage datasets demonstrate
that YOLO-SPRL achieves an mAP@0.5 of 38.91%, representing an improvement of 4.22% compared to the baseline
model. Additionally, the algorithm exhibits excellent robustness and strong small target recognition capability on a custom
drone garbage dataset. The integrated improvement strategy proposed in this study effectively enhances garbage detection
performance in complex scenarios. YOLO-SPRL achieves an optimal balance among accuracy, speed, and model size,
demonstrating the feasibility for deployment on embedded mobile devices, and providing a reliable technical solution for
real-time monitoring and management in urban intelligent sanitation systems.

Keywords: YOLOvVS; small target detection; rectangular self-calibration module; large separable kernel
attention
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